Studies on genetic variability and response to selection for quantitative and qualitative traits over environments in brinjal (*Solanum melongena* L.)

M. Siva¹, B. Balakrishna² and T.S.K.K.K. Patro³

¹Ph.D Scholar, Dept. of Vegetable Science
²Teaching Associate, Dept. of Genetics and Plant Breeding
³Associate Professor, Dept. of Vegetable Science
College of Horticulture, Dr YSR Horticultural University, Andhra Pradesh-534 101, India.
E-Mail: balubreeder@gmail.com

Abstract

The present study was conducted during the Rabi-2017-18 over three environments with 21 hybrids and their seven parents. The characters viz., the number of fruits per cluster, fruit width (cm), fruit length to girth ratio, average fruit weight (g) and the total number of fruits per plant recorded high GCV and PCV values and differences between these two parameters also less indicates presence of high genetic variability for these traits among the genotypes. Heritability and genetic advance as per cent mean for aforesaid traits also recorded high values; it means direct selection for these characters may be an effective and further evaluation for knowing the type of gene action actually involved in the phenotypic expression of these traits may be confirmed by estimating GCA and SCA variances by using any mating design.

Keywords
Brinjal, Genetic variability, Quantitative and qualitative characters and Over environments

Analysis of Variance

The data for different characters were statistically analyzed on the basis of the model given by Cochran and Cox (1950) for Randomized Complete Block Design.

\[Y_{ij} = \mu + b_i + t_j + e_{ij} \]
Where,
\[Y_{ij} \] = Performance of the \(j \)th genotype in the \(i \)th block
\[\mu \] = General mean
\[b_i \] = Effect of \(i \)th block
\[t_j \] = Effect of \(j \)th genotype
\[e_{ij} \] = Random error associated with \(j \)th genotype and \(i \)th block

Estimation of Genetic Parameters

Co-efficient of variation

Phenotypic and Genotypic Coefficients of Variation (PCV and GCV) were computed according to Burton (1952).
\[
\text{PCV} (\%) = \frac{\text{Phenotypic standard deviation (} \sigma_p \text{)}}{\text{General mean (} \bar{X} \text{)}} \times 100
\]
\[
\text{GCV} (\%) = \frac{\text{Genotypic standard deviation (} \sigma_g \text{)}}{\text{General mean (} \bar{X} \text{)}} \times 100
\]

As suggested by Sivasubramanium and Menon (1973), GCV and PCV were categorized into

- Low = Less than 10 per cent
- Moderate = 10-20 per cent
- High = More than 20 per cent

Heritability in a broad sense \((h^{2}_{(bs)}) \)

Heritability in a broad sense was estimated as per Lush (1940) and Allard (1960).
\[
h^{2}_{(bs)} = \frac{\text{Genotypic variance (} \sigma^2_g \text{)}}{\text{Phenotypic variance (} \sigma^2_p \text{)}} \times 100
\]

As suggested by (13), \(h^{2}_{(bs)} \) estimates were categorized into

- Low = 0-30 per cent
- Moderate = 31-60 per cent
- High = 60 per cent and above

Genetic advance (GA)

This was estimated as per the formula proposed by Lush (1940) and Allard (1960).
\[
\text{GA} = k \times \sigma_p \times h^{2}_{(bs)}
\]

Where,
\[K \] = Selection differential at 5% selection intensity which accounts to a constant value of 2.06
\[% h^{2}_{(bs)} \] = Heritability in broad sense
\[\sigma_p \] = Phenotypic standard deviation

Genetic advance as per cent of mean (GAM)

\[
\text{GAM} = \frac{\text{Genetic advance}}{\text{Grand mean (} \bar{X} \text{)}} \times 100
\]

The range of genetic advance as per cent of mean was classified as suggested by Johnson et al., 1955).

- Low = Less than 10 per cent
- Moderate = 10-20 per cent
- High = More than 20 per cent

The success of genetic improvement in any crop depends on the availability of genetic variability in that crop. Once the quantum of genetic variability knew then there is a great need to know the proportion of available genetic variability will be inherited to the next generation and quantum of gain in that character after exercising the selection this can be known through the estimation of heritability and genetic advance as per cent of mean. The pooled analysis of variance for 17 characters over three environments indicated that the presence of greater variability among the genotypes for these traits. The data was presented in Table 1.

Estimates of GCV and PCV

The values of GCV and PCV were calculated and presented in Table 2. Among the 17 traits studied seven characters viz., the number of fruits per cluster (27.80) (29.11) (Vidhya and Kumar, 2015), fruit width (cm) (22.52) (23.27) (Vidhya and Kumar, 2015), fruit length to girth ratio (22.65) (24.32), the total number of fruits per plant (33.21) (33.21) (Muniappan et al., 2010 and Pujer et al., 2017) and fruit yield per plant (21.39) (24.08) (Kumar et al., 2013 and Vidhya and Kumar, 2015) exhibited high GCV and PCV values indicates the presence of greater genetic variability among the genotypes studied. However the differences between PCV and GCV values were low for the characters, the number of fruits per cluster, fruit length, fruit width, fruit length to girth ratio and the total number of fruits per plant indicating the influencing of environment on these characters were less and whatever variability present among the genotypes was entirely due to
The traits, Plant height (12.17 & 10.18) (Pujer et al., 2017), the number of flowers per cluster (20.52 & 16.91), fruit length (15.87 &14.95), Average fruit weight (20.58 & 19.39), phenols (13.78 & 12.68), Ascorbic acid content (18.47 & 17.98) (Kumar et al., 2013) and fruit borer damage percentage recorded PCV and GCV values in the medium range and also low ECV values revealing that the genetic variability for these traits were medium in range among the genotypes but, it was entirely due to genotype and negligible influence of environment on these traits. Kumar et al. (2013) reported a similar kind of results while studying with brinjal crop. PCV and GCV values are low for the number of branches per plant, days to first flowering (Kumar et al., 2013), days to 50 % flowering, days to first harvest and days to final harvest and ECV values were also low indicating variability due to the genotype was very low in the plant material studied and influence of environment on these characters also negligible.

Table 1. Pooled analysis of variance for quantitative and qualitative traits in brinjal (Solanum melongena L.)

<table>
<thead>
<tr>
<th>Source of Variations</th>
<th>d.f</th>
<th>Plant height (cm)</th>
<th>Branches per plant</th>
<th>Days to flowering</th>
<th>Days to 50% flowering</th>
<th>Days to first flowering</th>
<th>Days to first harvest</th>
<th>Flowers per cluster</th>
<th>Fruits per cluster</th>
<th>Fruit length (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replications</td>
<td>2</td>
<td>4.02</td>
<td>1.39</td>
<td>20.54</td>
<td>3.12</td>
<td>6.00</td>
<td>2.24</td>
<td>0.11</td>
<td>0.16</td>
<td>0.20</td>
</tr>
<tr>
<td>Environments</td>
<td>2</td>
<td>721.82**</td>
<td>31.89**</td>
<td>236.55**</td>
<td>570.37**</td>
<td>299.32**</td>
<td>295.38**</td>
<td>76.86**</td>
<td>12.14**</td>
<td>17.51**</td>
</tr>
<tr>
<td>Interactions</td>
<td>4</td>
<td>3.06</td>
<td>0.92</td>
<td>1.05</td>
<td>1.40</td>
<td>3.26</td>
<td>2.19</td>
<td>0.16</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>Overall Sum</td>
<td>8</td>
<td>192.99**</td>
<td>8.78**</td>
<td>64.79**</td>
<td>144.07**</td>
<td>60.46**</td>
<td>75.50**</td>
<td>19.32**</td>
<td>3.09**</td>
<td>4.44**</td>
</tr>
<tr>
<td>Treatments</td>
<td>29</td>
<td>1429.10**</td>
<td>6.31**</td>
<td>64.84**</td>
<td>77.20**</td>
<td>152.56**</td>
<td>756.68**</td>
<td>5.10**</td>
<td>6.58**</td>
<td>30.06**</td>
</tr>
<tr>
<td>Error</td>
<td>232</td>
<td>64.84</td>
<td>0.64</td>
<td>6.90</td>
<td>8.92</td>
<td>18.26</td>
<td>110.80</td>
<td>0.25</td>
<td>0.07</td>
<td>0.42</td>
</tr>
</tbody>
</table>

*Significant 5% level of significance **Significant 1% level of significance

Table 2. Estimates of genetic parameters for quantitative and qualitative traits in brinjal (Solanum melongena L.)

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Character</th>
<th>Range (Mean)</th>
<th>ECV (%)</th>
<th>PCV (%)</th>
<th>GCV (%)</th>
<th>h² (%)</th>
<th>GA as per cent of mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Plant height (cm)</td>
<td>92.17 to 143.04</td>
<td>10.18</td>
<td>6.66</td>
<td>12.17</td>
<td>0.70</td>
<td>17.55</td>
</tr>
<tr>
<td>2</td>
<td>Number of branches per plant</td>
<td>8.83 to 12.23</td>
<td>7.71</td>
<td>7.77</td>
<td>10.95</td>
<td>0.49</td>
<td>11.18</td>
</tr>
<tr>
<td>3</td>
<td>Days to first flowering</td>
<td>34.47 to 45.41</td>
<td>6.36</td>
<td>6.58</td>
<td>9.15</td>
<td>0.48</td>
<td>9.10</td>
</tr>
<tr>
<td>4</td>
<td>Days to 50% flowering</td>
<td>43.11 to 54.54</td>
<td>5.67</td>
<td>8.14</td>
<td>8.36</td>
<td>0.46</td>
<td>7.92</td>
</tr>
<tr>
<td>5</td>
<td>Days to first harvest</td>
<td>50.04 to 65.56</td>
<td>7.45</td>
<td>5.10</td>
<td>6.74</td>
<td>0.45</td>
<td>9.31</td>
</tr>
<tr>
<td>6</td>
<td>Days to final harvest</td>
<td>155.04 to 194.12</td>
<td>4.72</td>
<td>5.86</td>
<td>7.52</td>
<td>0.42</td>
<td>6.09</td>
</tr>
<tr>
<td>7</td>
<td>Number of flowers per cluster</td>
<td>3.18 to 5.71</td>
<td>16.91</td>
<td>11.62</td>
<td>20.52</td>
<td>0.68</td>
<td>28.70</td>
</tr>
<tr>
<td>8</td>
<td>Number of fruits per cluster</td>
<td>1.58 to 4.57</td>
<td>27.68</td>
<td>8.55</td>
<td>29.11</td>
<td>0.91</td>
<td>54.78</td>
</tr>
<tr>
<td>9</td>
<td>Fruit length (cm)</td>
<td>7.79 to 17.38</td>
<td>14.95</td>
<td>5.32</td>
<td>15.87</td>
<td>0.95</td>
<td>29.03</td>
</tr>
<tr>
<td>10</td>
<td>Fruit width (cm)</td>
<td>7.60 to 20.86</td>
<td>22.52</td>
<td>5.85</td>
<td>23.27</td>
<td>0.94</td>
<td>44.90</td>
</tr>
<tr>
<td>11</td>
<td>Fruit length to girth ratio</td>
<td>0.65 to 1.76</td>
<td>22.65</td>
<td>8.87</td>
<td>24.32</td>
<td>0.87</td>
<td>43.43</td>
</tr>
<tr>
<td>12</td>
<td>Average fruit weight (g)</td>
<td>40.56 to 90.24</td>
<td>19.39</td>
<td>6.89</td>
<td>20.58</td>
<td>0.89</td>
<td>37.83</td>
</tr>
<tr>
<td>13</td>
<td>Total number of fruits per plant</td>
<td>15.22 to 70.21</td>
<td>33.21</td>
<td>11.07</td>
<td>35.00</td>
<td>0.90</td>
<td>64.90</td>
</tr>
<tr>
<td>14</td>
<td>Fruit yield per plant</td>
<td>1.32 to 3.45</td>
<td>21.39</td>
<td>11.05</td>
<td>24.08</td>
<td>0.79</td>
<td>39.15</td>
</tr>
<tr>
<td>15</td>
<td>Phenols (mg/100g)</td>
<td>3.56 to 12.62</td>
<td>6.39</td>
<td>13.79</td>
<td>12.68</td>
<td>0.85</td>
<td>24.03</td>
</tr>
<tr>
<td>16</td>
<td>Ascorbic acid content (mg/100g)</td>
<td>5.52 to 11.76</td>
<td>17.98</td>
<td>4.20</td>
<td>18.47</td>
<td>0.95</td>
<td>36.08</td>
</tr>
<tr>
<td>17</td>
<td>Fruit borer damage percentage (%)</td>
<td>20.80 to 38.25</td>
<td>13.34</td>
<td>8.34</td>
<td>15.73</td>
<td>0.72</td>
<td>23.29</td>
</tr>
</tbody>
</table>

The estimates of heritability and genetic advance as per cent mean helpful in deciding, whether a particular character amicable to selection or not. In the present study, the traits viz., the number of flowers per cluster (91.00 & 54.78) (4), fruit length (cm) (89.00 & 29.03), fruit width (cm) (94.00 & 44.90) (4), fruit length to girth ratio (87.00 & 43.43), average fruit weight (g) (89.00 & 37.63), the total number of fruits per plant (90.00 & 64.90), fruit yield per plant (79.00 & 39.15) (Vidhya and Kumar, 2015), phenols (mg/100g) (85.00 & 24.03) (Kumar et al., 2013), ascorbic acid content (mg/100g) (95.00 & 36.08) (Kumar et al., 2013) and fruit borer damage percentage (72.00 & 23.29)
(Kumar et al., 2013) were recorded a high heritability along with genetic advance as per cent of mean indicating these characters may be controlled by an additive type of gene action and simple selection may be effective. Days to first flowering (48.00 & 9.10) (Kumar et al., 2013), days to 50% flowering (46.00 & 7.92), days to first harvest (45.00 & 9.31), days to final harvest (10.94 & 6.09) (Shende et al., 2015) recorded a medium heritability and low genetic advance, it means these traits may be controlled by non-additive type gene action and it can be exploited through heterosis breeding. The character plant height exhibited high heritability (70.00) with medium genetic advance (17.55) revealing that phenotypic expression of this trait may be regulated by the involvement of both additive and non-additive gene actions. Medium heritability (49.00) and genetic advance as per cent of mean (11.18) (Shende et al., 2015) was exhibited by the number of branches per plant it means this character may be controlled by the combination of additive and non-additive type of gene actions. In plant breeding approach, the selection is effective when the character under consideration has more genetic variability and negligible influence of environment on the trait. Heritability and genetic advance as per cent of mean also played a crucial role to decide the type of gene action involved in the phenotypic expression of character. Paul (1978) mentioned that the traits which are having more genetic variability along with high heritability and genetic advance as per cent of the mean may be improved through selection as these may be controlled by additive type gene action and which is fixable. Whereas sometimes heritability may be high and genetic advance as per cent may be low this situation indicates the high heritability may be due to the influence of environment and selection for these traits may not be effective. In the present investigation the traits viz., the number of fruits per cluster, fruit length (cm), fruit width (cm), fruit length to girth ratio and the total number of fruits per plant are more responsive to direct selection. There is further need to confirm the type of gene action involved in the phenotypic expression of these traits by using different mating designs in plant breeding.

REFERENCES

