Research Article

Heterosis and combining ability for grain yield and yield component traits in maize (Zea mays L.)

A. Rajitha¹, D. Ratna Babu^{1*}, Lal Ahamed M¹ and V. Srinivasa Rao²

¹Department of Genetics and Plant Breeding

²Department of Statistics and Mathematics, Agricultural College, Bapatla

Agricultural College, Bapatla-522 101 *Email: didlaratnababu@gmail.com

(Received: 10 Apr 2014; Accepted: 20 Jul 2014)

Abstract

Fifteen hybrids obtained by crossing five Lines with three Testers were evaluated to study heterosis and combining ability for grain yield per plant and its component traits. Further, heterosis studies revealed that almost all the Line x Tester combinations registered significant positive heterosis over both mid and better parents for grain yield per plant. The crosses namely BM-256 x BM-85, BM-256 x BM-143, BM-3 x RNBL-4351, BM-421 x BM-85 recorded higher level of significant relative heterosis and heterobeltiosis for grain yield per plant. Combining ability analysis suggested the preponderance of non-additive type of gene action for majority of the traits *viz.*, days to 50% tasseling, days to 50% silking, 100-seed weight, grain protein content and grain yield per plant. Out of the five lines tested in the present investigation, genotypes namely BM-421 and BM-256 recorded significant general combining ability effects in desirable direction for majority of the traits; while the tester, BM-143 recorded significant general combining effect for grain protein content. None of the 15 Line x Tester combinations recorded significant *sca* effect for grain yield per plant. The cross BM-77 x BM-85 recorded significant *sca* effect for plant height and grain protein content.

Kev words:

Maize, Line x Tester analysis, Heterosis and Combining ability

Introduction:

Maize is a highly allogamous crop and there is a wide scope for exploitation of hybrid vigour, hence it has been successfully exploited for the production of hybrids. Parental selection is very important in hybrid development. In this context, L x T analysis (Kempthome, 1957) has widely been used for evaluation of inbred lines by crossing them with testers. The value of any inbred line in hybrid breeding ultimately depends on its ability to combine very well with other lines to produce superior hybrids. Hence, Combining ability analysis is an important tool to identify parents with better potential to transmit desirable characteristics to the progenies and to identify the best specific cross(s) for yield.

The exploitation of heterosis in maize (Zea mays L.) can be accomplished through the development and identification of high per se performance vigorous parental lines and their subsequent evaluation for combining ability in cross combinations to identify the hybrids with high heterotic effects. The information about the heterotic patterns and combining ability of the parents and crosses facilitate the breeders in the selection and development of the single cross hybrids.

Material and Methods

The experimental material consisted of 24 genotypes, comprising of 5 Lines (BM-421, BM-

256, BM-77, BM-211 and BM-3), three Testers (RNBL-4351, BM-143 and BM-85) and their resultant 15 hybrids produced by line x tester mating design were evaluated along with one standard check DHM-117. The experimental materials were raised in randomized block design with three replications in experimental field at Agricultural College farm, Bapatla during Kharif 2012. Each genotype was raised in five rows of three metre length with a spacing of 60 x 25 cm. Observations were recorded on ten randomly selected plants per treatment per replication for the traits namely plant height (cm), cob length (cm), kernel rows per cob and grain yield per plant (g) and were used for statistical analysis. However, days to 50% tasseling, days to 50% silking, days to maturity, 100-seed weight (g) and grain protein content (%) were recorded on plot basis. The data on the following yield and yield component traits were recorded.

Line x Tester analysis was carried out according to Kempthorne (1957). The heterosis was estimated in terms of three parameters, *i.e.* relative heterosis, heterobeltiosis and standard heterosis. Mean values per replication for all traits were subjected to analysis of variance according to Panse and Sukhatme (1985) for randomized block design. The estimates of general and specific combining ability and their variances were obtained by using covariance of half sibs and full sibs.

Results and Discussion

The analysis of variance for combining ability revealed that lines had significant amount of variability for the characters viz., days to 50% tasseling, days to maturity, kernel rows per cob, 100-seed weight and grain protein content, while testers had significant variability for plant height and grain protein content. However, crosses had significant amount of variability for all characters except for days to maturity and grain yield per plant. The parents vs hybrids were significant for majority of the characters except days to maturity and grain protein content which suggested the presence of substantial amount of heterosis in crosses for majority of the characters (Table 1). In case of Line x Tester effects significant amount of variability was observed for days to 50% tasseling, days to 50% silking, plant height, 100-seed weight and grain protein content.

The estimates of relative heterosis (RH) and heterobeltiosis (BH) were ranged from -7.69 to 0.67 and -9.09 to 0.67 for days to 50% tasseling, -7.55 to 4.55 and -8.13 to 1.90 for days to 50% silking, -6.38 to 2.48 and -8.79 to 0.76 for days to maturity, 10.30 to 53.86 and 1.41 to 45.77 for plant height, 14.76 to 45.02 and 4.48 to 44.91for cob length, 1.79 to 23.38 and -6.68 to 22.01 for kernel rows per cob, -0.28 to 48.51 and -1.85 to 44.04 for 100-seed weight, -12.54 to 18.44 and -14.18 to 17.54 for grain protein content and 70.96 to 134.12 and 56.75 to 131.81 for grain yield per plant (Table 2), respectively.

Out of the 15 hybrids, 9 and 10 hybrids were found significant and negative heterosis over mid and better parent for days to 50% tasseling, 6 and 6 hybrids recorded significant negative heterosis over mid and better parent for days to 50% silking, 2 and 1 hybrid recorded significant negative heterosis over mid and better parent for days to maturity. Negative heterosis is desirable for these characters which indicates the earliness.

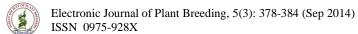
Among 15 hybrids over mid and better parent, 12 and 8 hybrids recorded significant positive heterosis for plant height, all 15 and 11 hybrids recorded positive significant heterosis for cob length, 10 and 7 hybrids for kernel rows per cob, 14 and 13 hybrids for 100-seed weight, 15 and 9 hybrids for grain protein content showed positive and significant heterosis.All 15 and 14 hybrids exhibited positive and significant relative heterosis and heterobeltiosis for grain yield per plant. The cross BM-421 x BM-143 recorded highest positive significant heterosis over mid parent and better parent. These results were in accordance with the findings of Appunu and Satvanarayana (2007) and Raghu et al. (2012). Improvement in yield is one of the objectives, thus the heterosis can be useful only with superiority over the best checks. The check included in the present study is DHM-117 which is a promising hybrid released by ANGRAU in Andhra Pradesh. The estimates of standard heterosis (SH) ranged from -16.67 to -7.41, -19.44 to -10.56 and -13.54 to -6.60 for days to 50% tasseling, days to 50% silking and days to maturity (Table 2), respectively. All 15 hybrids exhibited significant standard heterosis in desirable direction.

The range of standard heterosis ranged from -24.57 to 4.04 for plant height, 13.40 to 10.90 for cob length, -11.06 to 2.65 for kernel rows per cob, -28.94 to 5.39 for 100-seed weight, -15.47 to 7.00 for grain protein content and -21.30 to 0.99 for grain yield per plant. None of the 15 Line x Tester combinations recorded significant positive standard heterosis for plant height, cob length, kernel rows per cob, 100-seed weight and grain vield per plant over check DHM-117. The hybrid BM-256 x BM-143 recorded maximum grain yield per plant (130.03) over the standard check. Similar results of positive heterosis over standard parent were reported by Appunu and Satyanarayana (2007), Dubey et al. (2009) and Raghu et al. (2012).

Analysis of variance for combining ability for yield and yield contributing characters in maize is presented in the Table 3. Further the variation present in the hybrids is partitioned into portions attributable to lines, testers, lines x tester components. The per cent contribution towards the total variance was maximum due to the interaction of lines and testers for the traits grain yield per plant, 100-seed weight, days to 50% silking, grain protein content, days to 50% tasseling and days to maturity while contribution of lines alone was maximum towards the total variance for cob length, kernel rows per cob and plant height (Table 3).

However the ratio of variance to the total variance suggested the preponderance of non-additive gene action for majority of the traits *viz.*, days to 50% tasseling, days to 50% silking, 100-seed weight, grain protein content and grain yield per plant. Similar results were reported by Venugopal *et al.* (2002), Sumalini and Rani (2010), Premlatha *et al.* (2011) and for non-additive gene action. While cob length which is governed by additive gene action and traits like kernel rows per cob and days to maturity were governed by both additive and non-additive gene action.

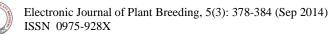
Estimates of general and specific combining ability: Out of the five lines tested in the present investigation, BM-421 and BM-256 recorded significant general combining ability effects in desirable direction for four (days to 50% tasseling, plant height, cob length and grain protein content) and three characters (days to 50% silking, kernel rows per cob and grain yield per plant) followed by BM-77 for 100-seed weight and grain protein



content and BM-211 for 100-seed weight, respectively (Table 4). While the tester, BM-143 recorded significant general combining effect for grain protein content (Table 4).

Further the tested lines were given ranking based on the respective combining abilities of all the characters studied, the genotypes namely BM-421 and BM-256 ranked first followed by BM-211 (Table 4). Therefore these lines can be utilized in improvement of the respective traits in any breeding programme wherever hybridization is involved. Due to their good combining ability these lines can be utilized straightaway as parents for production of good hybrids by crossing with other divergent lines and can also be employed in the development of synthetic varieties. None of the 15 Line x Tester combinations recorded significant sca effect for grain yield per plant (Table 5). The cross BM-77 x BM-85 recorded significant sca effect for plant height and grain protein content. The crosses BM-3 x RNBL-4351 and BM-421 x BM-85 recorded significant sca effects for 100seed weight. The gca effects of parents and sca effects of their hybrid combinations indicated that the crosses with high sca effects were resulted due to high x low, low x low and high x high gca combinations. Therefore, one can afford to include some low general combiners also along with good combiners in hybridization programmes.

References


- Appunu, C and Satyanarayana, E. 2007. Heterosis for grain yield and its components in maize (*Zea mays* L.). *J.Res. ANGRAU* 35: 3, 27-30.
- Dubey, R.B., Joshi, V.N and Verma, M. 2009. Heterosis for nutritional quality in conventional and nonconventional hybrids of maize (*Zea mays* L.). *Indian J.Genet.* 61: 2, 109-114.
- Kempthorne, O. 1957. An introduction of Genetic Statistics. John Wiley and Sons Inc., New York. pp. 458-471
- Panse, V.G. and Sukhatme, P.V. 1985. Statistical methods for Agricultural workers, Indian Council of Agricultural Research, New Delhi.
- Premlatha, M., Kalamani, A and Nirmalakumari, A. 2011. Heterosis and combining ability for grain yield and quality in maize (*Zea mays* L.). *Adv. in Env. Biol. 5: 6, 1264-1266.*
- Raghu, B., Suresh, J., Geetha, P., Saidaiah, P and Kumar, S.S. 2012. Heterosis for grain yield and its component traits in maize (*Zea mays* L.). *J.Res. ANGRAU*. 40: 1, 83-90.
- Sumalini, K and Rani, T.S. 2010. Heterosis and combining ability for polygenic traits in late maturity hybrids of maize (*Zea mays L.*). *Madras Agric J.* 97: 10-12, 340-343.
- Venugopal, M., Ansari, N.A and Rao, N.V. 2002. Combining ability studies in maize (*Zea mays* L.). *Annals of Agric Res.* 23: 92-95.

Source of variation	Df	Days to 50%	Days to 50%	Days to	Plant height	Cob length	Kernel rows	100-seed	Grain protein	Grain yield per
		tasseling	silking	maturity			per cob	weight	content	plant
Replications	2	0.710	0.522	1.797	6.437	3.032	0.935	0.873	0.185	91.591
Genotypes (G)	22	8.130**	6.949**	17.086	2141.649**	13.733**	2.939**	31.570**	1.380**	2546.633**
Parents (P)	7	5.804**	3.500	24.423	1200.839**	2.768	2.443**	8.303**	0.599^{**}	65.456
Lines (F)	4	8.233**	4.733	32.767^{*}	786.468	0.315	3.251**	13.388**	0.551**	83.609
Γesters (M)	2	3.444	2.778	8.444	2327.307**	7.165	1.240	0.881	0.994**	54.613
(F Vs M)	1	0.803	0.011	23.003	605.388	3.784	1.619	2.809	0.000	14.532
Crosses	14	4.613**	6.327^{*}	11.181	928.743**	2.994^{*}	1.255*	15.112**	1.869**	272.427
Parents Vs. Crosses	1	73.667**	39.792**	48.392	25708.004**	240.842**	29.974**	424.846**	0.001	51753.749**
Line Effect	4	7.256	6.922	14.522	1486.895	6.479	2.598	20.251	1.966	312.150
Tester Effect	2	1.689	3.356	16.467	717.281	1.155	0.375	0.218	1.458	70.736
Line x Tester Effect	8	4.022^{*}	6.772^{*}	8.189	702.533*	1.711	0.804	16.265**	1.924**	302.988
Error	44	1.453	2.613	12.433	322.405	1.456	0.532	0.697	0.103	938.771
Total	68	3.591	3.954	13.626	901.690	5.474	1.323	10.690	0.519	938.771

Sl. No.	II-1-:: 1-/	Days to 50% tasseling			Days to 50%	silking		Days to maturity		
	Hybrids/ crosses	RH	ВН	SH	RH	BH	SH	RH	ВН	SH
	BM-421 x RNBL-4351	-3.45	-6.04**	-13.58**	-1.65	-2.61	-17.22**	-4.60	-8.79**	-13.54**
	BM-421 x BM-143	-6.57**	-8.78**	-16.67 ^{**}	4.55	1.90	10.56**	-1.56	-4.18	-12.50*
	BM-421 x BM-85	-2.11	-2.80	-14.20**	0.65	-1.90	-13.89**	0.00	-3.37	-10.42**
	BM-256 x RNBL-4351	-6.80**	-8.05**	-15.43**	-6.15**	-7.05**	-19.44**	-5.82 [*]	-8.06*	-12.85**
	BM-256 x BM-143	-3.07	-4.05	-12.35**	-3.82	-4.43	-16.11**	1.34	0.76	-7.99 [*]
	BM-256 x BM-85	-4.17*	-4.83 [*]	-14.81**	-5.73*	-6.33 [*]	-17.78**	-2.47	-3.75	-10.76**
	BM-77 x RNBL-4351	0.67	0.67	-7.41**	0.96	-0.63	-12.78**	-1.32	-4.03	-9.03 ^{**}
	BM-77 x BM-143	-2.36	-2.68	-10.49**	-4.43	-4.43	-16.11**	-1.73	-2.66	-11.11*
	BM-77 x BM-85	-4.11*	-6.04**	-13.58**	-5.70 [*]	-5.70 [*]	-17.22**	2.48	0.75	-6.60 [*]
)	BM-211 x RNBL-4351	-7.69 ^{**}	-8.00**	-14.81**	-4.79 [*]	-6.88**	-17.22**	-3.35	-4.76	-9.72 ^{**}
	BM-211 x BM-143	-2.68	-3.33	-10.49**	-3.14	-3.75	-14.44**	-3.03	-3.40	-11.11**
2	BM-211 x BM-85	-4.44*	-6.67**	-13.58**	-7.55 ^{**}	-8.13**	-18.33**	-3.01	-3.37	-10.42**
3	BM-3 x RNBL-4351	-7.59 ^{**}	-9.09**	-13.58**	0.65	-0.64	-13.33**	-6.38 [*]	-6.88	-10.76**
ļ	BM-3 x BM-143	-5.96**	-7.79**	-12.35**	-6.03**	-6.33 [*]	-17.78**	-3.15	-5.43	-9.38 ^{**}
	BM-3 x BM-85	-4.38*	-7.79**	-12.35**	-3.49	-3.80	-15.56**	-1.29	-2.90	-6.94*
ngo	Max.	0.67	0.67	-7.41	4.55	1.90	-10.56	2.48	0.76	-6.60
Range	Min.	-7.69	-9.09	-16.67	-7.55	-8.13	-19.44	-6.38	-8.79	-13.54
	Average	-4.31	-5.68	-13.05	-3.04	-4.05	-15.85	-2.26	-4.00	-10.21

Average -4.31 *, ** Significant at 5% and 1% levels, respectively

Table 2 (Continued). Magnitude of Relative Heterosis (RH), Heterobeltiosis (BH) and Standard Heterosis (SH) for plant height, cob length and kernel rows per cob										
Cl No	Hybrids/ crosses	Plant height			Cob length			Kernel rows per cob		
Sl. No.	Hybrids/ crosses	RH	BH	SH	RH	ВН	SH	RH	BH	SH
1	BM-421 x RNBL-4351	25.03**	18.11*	4.04	33.06**	33.03**	-3.69	6.49	4.59	-11.06**
2	BM-421 x BM-143	46.48**	30.82**	2.48	38.33**	26.05**	10.90	23.38**	22.01**	0.04
3	BM-421 x BM-85	17.57*	10.33	-13.58	45.02**	44.91**	4.86	8.91^{*}	4.90	-7.16
4	BM-256 x RNBL-4351	21.32^{*}	3.76	-8.60	39.52**	37.88**	2.22	11.48**	8.82	-2.82
5	BM-256 x BM-143	28.23**	27.20^{*}	-20.38**	22.55^{**}	12.90	-0.66	21.13**	14.94**	2.65
6	BM-256 x BM-85	29.14**	23.42^{*}	-15.23 [*]	36.76**	35.02**	0.10	13.29**	12.78**	0.72
7	BM-77 x RNBL-4351	20.84*	2.57	-9.65	32.78**	30.53**	-2.18	10.69*	9.52*	-6.88
8	BM-77 x BM-143	41.92**	41.76^{**}	-12.69	21.68**	12.66	-0.88	13.10**	11.02^{*}	-7.59
9	BM-77 x BM-85	53.86**	45.77**	0.11	27.17^{**}	24.88**	-6.42	5.09	1.96	-9.76 [*]
10	BM-211 x RNBL-4351	10.30	1.58	-10.52	36.88**	34.67**	-2.50	2.53	-4.71	-5.64
11	BM-211 x BM-143	45.97**	33.60**	-0.92	20.33**	8.07	-4.92	3.14	-6.68	-7.59
12	BM-211 x BM-85	17.35	13.01	-16.19 [*]	29.11**	27.16^{**}	-8.13	1.79	-3.61	-4.56
13	BM-3 x RNBL-4351	19.17^{*}	1.41	-10.67	19.76**	19.61*	-13.40 [*]	18.35**	17.18**	1.65
14	BM-3 x BM-143	29.01**	28.75^{*}	-20.39**	14.76^*	4.48	-8.07	16.44**	12.03	-2.82
15	BM-3 x BM-85	15.58	9.82	-24.57**	31.82**	31.80**	-4.78	10.90^{**}	9.80^{*}	-2.82
Danga	Max.	53.86	45.77	4.04	45.02	44.91	10.90	23.38	22.01	2.65
Range	Min.	10.30	1.41	-24.57	14.76	4.48 to	-13.40	1.79	-6.68	-11.06
	Average	28.12	19.46	-10.45	29.97	25.58	-2.50	11.11	7.64	-4.24

Table 2 (Continued). Magnitude of Relative Heterosis (RH), Heterobeltiosis (BH) and Standard Heterosis (SH) for 100-seed weight, grain protein content and grain yield per plant										
Sl. No.	Hybrids/ crosses	100-Seed weight			Grain proteir	n content		Grain yield per plant		
SI. NO.		RH	BH	SH	RH	ВН	SH	RH	ВН	SH
1	BM-421 x RNBL-4351	25.37**	21.89**	-9.49 ^{**}	8.95**	2.70	3.61	91.34**	89.70**	-20.86 [*]
2	BM-421 x BM-143	-0.28	-1.85	-28.94**	18.44**	17.54**	4.97	82.43**	71.22**	-18.57 [*]
3	BM-421 x BM-85	30.81**	30.61**	-8.41**	-1.85**	-2.94	-11.35**	115.20**	110.94	-8.38
4	BM-256 x RNBL-4351	27.42**	20.08**	-10.83**	-12.31**	-14.10**	-13.33**	111.08^{**}	107.17^{**}	-11.79
5	BM-256 x BM-143	43.07**	36.44**	-1.21	-8.48**	-12.65 ^{**}	-15.47**	124.09**	112.36**	0.99
6	BM-256 x BM-85	48.51**	44.04**	0.70	-9.34 ^{**}	-11.89 ^{**}	-14.73**	134.12**	131.81**	0.68
7	BM-77 x RNBL-4351	14.21**	5.39	-7.44*	11.28**	3.39	4.31	85.88**	66.10^{**}	-13.48
8	BM-77 x BM-143	31.55**	20.00^{**}	5.39	-2.34**	-3.09	-14.77**	97.65**	89.04**	-1.52
9	BM-77 x BM-85	20.71**	8.40^{*}	-4.80	15.68**	12.68**	2.91	70.96^{**}	56.75**	-18.35 [*]
10	BM-211 x RNBL-4351	28.14**	24.83**	-2.25	-10.83**	-12.63**	-11.85**	115.45**	107.25**	-8.02
11	BM-211 x BM-143	28.11**	23.29**	-3.46	15.82**	10.52**	7.00^{*}	83.88**	77.74**	-15.47
12	BM-211 x BM-85	41.13**	33.56**	4.59	-9.36**	-11.92 ^{**}	-14.73**	111.62**	109.36**	-7.08
13	BM-3 x RNBL-4351	42.75**	41.75**	5.26	-12.54**	-14.18	-13.41**	117.09^{**}	106.44**	-6.15
14	BM-3 x BM-143	37.57**	36.81**	0.16	9.03**	3.88	0.89	95.44**	91.13**	-9.10
15	BM-3 x BM-85	18.23**	15.57**	-15.39 ^{**}	-10.25**	-12.93**	-15.43	77.06^{**}	73.11**	-21.30 [*]
Dongo	Max.	48.51	44.04	5.39	18.44	17.54	7.00	134.12	131.81	0.99
Range	Min.	-0.28	-1.85	-28.94	-12.54	-14.18	-15.47	70.96	56.75	-21.30
	Average	29.15	24.05	-5.07	0.13	-3.04	-6.76	100.89	93.34	-10.56

^{*, **} Significant at 5% and 1% levels, respectively

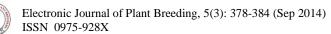


Table 3. Estimates of genetic components of variance and proportional contribution of Lines, Testers and Line x Tester interaction to total variance for different characters Days to 50% Days to 50% Days to Plant height Cob length Kernel rows 100-seed weight Grain protein Grain yield per tasseling silking maturity per cob content plant 0.0375 -0.1361 0.6088 33.2963 0.1755^* 0.0568 -0.5026 -0.0176 -9.2954 gca 5.1895** 0.6068** 0.8566^* 1.3865* -1.4149 126.7094 0.0850 0.0906 43.2128 sca2gca/2gca+sca 0.0805 -0.2443 -6.1713 0.3445 0.8050 0.5563 -0.2402 -0.0616 -0.7550 Narrow sense 5.2976 13.7127 30.8468 22.1407 38.1073 29.7664 22.7569 5.8229 22.5602 heritability (%) Contribution (%) 44.9415 31.2594 37.1096 45.7421 38.2888 30.0472 32.7375 Lines 61.8350 59.1206 5.2306 7.5765 21.0392 11.0331 5.5127 4.2649 0.2062 11.1446 3.7093 Testers 49.8279 61.1641 41.8512 43.2248 32.6523 36.6145 61.5050 58.8082 63.5532 Line x Tester

Table 4. Estimates of general combining ability (gca) effects of parents for grain yield per plant and its component characters

Parents	Days to 50%	Days to 50%	Days to	Plant height	Cob length	Kernel rows	100-seed	Grain protein	Grain yield per
	tasseling	silking	maturity		-	per cob	weight	content	plant
Lines/Females									
BM-421	-0.956*	1.178*	-1.867	16.444*	1.116**	-0.279	-2.619**	0.501**	-6.923
BM-256	-0.622	-1.156*	-0.311	-8.711	0.522	0.680**	0.322	-0.665**	9.257*
BM-77	1.378**	0.289	1.244	6.178	-0.112	-0.589*	0.694*	0.364**	-0.713
BM-211	0.044	-0.489	-0.200	2.521	-0.458	-0.259	1.168**	0.020	0.473
BM-3	0.156	0.178	1.133	-16.432*	-1.068*	0.448	0.435	-0.219	-2.093
SE	0.402	0.539	1.175	5.985	0.402	0.243	0.278	0.107	4.389
CD at 5%	0.823	1.104	2.407	12.260	0.824	0.498	0.570	0.219	8.990
Testers/Males									
RNBL-4351	0.044	-0.089	-0.933	6.842	-0.240	-0.109	0.030	0.054	-1.931
BM-143	0.311	0.511	-0.200	0.143	0.304	0.181	-0.133	0.282**	2.351
BM-85	-0.356	-0.422	1.133	-6.986	-0.064	-0.073	0.102	-0.335**	-0.419
SE	0.311	0.417	0.910	4.636	0.311	0.188	0.26	0.083	3.400
CD at 5%	0.637	0.855	1.865	9.496	0.638	0.385	0.442	0.170	6.964

^{*, **} Significant at 5% and 1% levels, respectively

^{*, **} Significant at 5% and 1% levels, respectively

Electronic Journal of Plant Breeding, 5(3): 378-384 (Sep 2014) ISSN 0975-928X

Table 5. Estimates of specific combining ability (sca) effects of hybrids for grain yield per plant and its component characters Grain Days to 50% Days to 50% 100-seed Grain yield Days to Kernel rows Crosses Plant height Cob length protein tasseling weight silking maturity per cob per plant content BM-421 x RNBL-4351 0.622 -1.911 0.400 6.138 -1.078-0.660 1.491 0.335 -4.409 -3.179** BM-421 x BM-143 -1.31 1.489 -0.133 9.667 0.872 0.756 0.224 -5.741 -0.559** BM-421 x BM-85 0.689 0.422 0.533 -15.804 0.206 -0.096 1.689^{**} 10.149 -1.784** BM-256 x RNBL-4351 -0.711-0.911 -1.289 5.623 0.526 -0.352 0.048 -8.909 BM-256 x BM-143 0.689 0.489 2.644 -11.604 -0.5120.198 0.773 -0.3643.269 0.022 BM-256 x BM-85 0.422 -1.356 5.981 -0.0140.155 1.011^{*} 0.316 5.639 1.622^{*} 0.822 0.293 -1313^{*} 0.532^{**} BM-77 x RNBL-4351 1.644 -11.396 0.407 -1.109 -1.333** -0.311 -0.956 -1.911 0.086 -0.107 2.041** 9.999 BM-77 x BM-143 -10.866 22.262^* 0.801^{**} -8.891 BM-77 x BM-85 -1.311 -0.689 1.089 -0.493-0.1860.728 -1.044 0.510^{*} BM-211 x RNBL-4351 -0.2441.600 -9.509 0.699 0.153 -0.497 4.725 0.878^{**} BM-211 x BM-143 1.022 0.822 -0.467 16.690 -0.258 -0.437 -0.634-9.147 0.022 BM-211 x BM-85 -0.578 -1.133 -7.181 0.284 1.131 -0.3684.423 -0.441-0.4890.566 2.103** -0.405 9.701 BM-3 x RNBL-4351 1.422 -0.7339.144 -0.554 0.594^{**} BM-3 x BM-143 -0.089 -1.844-0.133 -3.886-0.188-0.410 1.000^{*} 1.619 -3.102** BM-3 x BM-85 0.578 0.422 0.867 -5.2580.742 -0.156-0.189-11.321 SE 0.696 0.933 2.036 10.367 0.696 0.421 0.482 0.186 7.601 CD at 5% 1.425 1.912 4.170 21.235 1.427 0.863 0.987 0.380 15.571

^{*, **} Significant at 5% and 1% levels, respectively