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Abstract 
The aim of this study was to explore the characteristics essential for a maintainer line to effectively complement 
the A lines in hybrid rice production. The experiment was conducted at the Regional Agricultural Research Station, 
Jagtial and Telangana, India during kharif, 2016 (June-October). A total of 40 genotypes were raised in Randomized 
Block Design (RBD) with two replications. PCA identified five principal components (PCs) with Eigen values over 1, 
collectively accounting for approximately 75.50% of the total variance. PC1 predominantly representing yield and 
related features (number of tillers per plant, panicle length, length-to-breadth ratio, grain yield per plant), while the other 
PCs corresponded to unique aspects like grain numbers, morphological and quantitative traits. The study also utilized 
biplot analysis to elucidate the relationships among these traits, revealing significant correlations and interactions 
crucial for rice breeding. It indicated a negative correlation between 1000 grain weight, kernel breadth, and the number 
of grains per panicle, while showing positive correlations among traits influencing grain yield. This method also proved 
assistance in identifying superior genotypes for specific traits, as exemplified by genotypes JMS18B and JMS20B 
excelling in grain numbers per panicle and genotype B18 standing out in grain yield and other yield-related traits.
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Heterosis, also known as hybrid vigour, is the 
phenomenon of two genetically distinct parents 
producing an F1 hybrid that surpasses the parental lines 
in multiple phenotypic characteristics (Birchler et al., 
2015). Harnessing heterosis is an important strategy to 
improve the yield and broaden the adaptability of rice 
crop. Rice is an important cereal crop worldwide. Strong 
hybrid vigour has been demonstrated in rice, leading to 
a yield increase of approximately 20% in the F1 hybrid 
compared with the parental lines (Cheng et al., 2007; Ma 
and Yuan 2015). Hybrid rice has been commercialized in 
China since the 1970s, and it has significantly contributed 
to rice production and food supply domestically and 

globally (Li and Yuan 2000). Currently, two technologies 
are widely used in hybrid rice production: the three-line 
method and the two-line method. However, restorer 
lines face a severe germplasm limitation, because they 
must carry specific nuclear Rf alleles for a given sterile 
line. With the discovery of photoperiod-sensitive genic 
male sterility (PGMS) (Zhang and Yuan 1987) and 
temperature-sensitive genic male sterility (TGMS) (Chen 
et al., 1994) and (Zhou et al., 2014), rice breeders 
developed a two-line hybrid system consisting of a sterile 
line and a restorer line. In this system, because both 
PGMS and TGMS alleles are nuclear-recessive and male 
fertility can be restored by nearly all normal cultivars  
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(Ding et al., 2012) (Zhou et al., 2012) there is no 
germplasm limitation for the restorer lines, and nearly all 
rice accessions can be used as restorer lines. Thus, the 
two-line hybrid system has facilitated rice hybrid breeding 
compared with the three-line system (Wu et al., 2016). 
But the two-line system is generally less stable than the 
three-line system, because the fertility of PGMS/TGMS 
is vulnerable to uncontrollable weather fluctuations (Tao 
et al., 2003). Moreover, reliance on a single source of 
cytoplasmic male sterility (CMS), specifically the Wild 
Abortive (WA) system, in all hybrids released in the 
country raises concerns of genetic vulnerability and a 
narrow genetic base. Addressing the genetic vulnerability 
associated with a prolonged reliance on a single source 
of cytoplasmic male sterility (CMS), such as the Wild 
Abortive (WA) system, becomes increasingly pertinent in 
the face of evolving challenges posed by diseases and 
insect pests. Therefore, diversifying the genetic makeup 
of maintainer lines is crucial for hybrid seed production. 
Maintainer lines, responsible for producing seeds for 
hybrid varieties, play a key role in ensuring the vigor 
and productivity of these hybrids through their genetic 
diversity. The characteristics essential for a maintainer 
line to effectively complement the A line in hybrid rice 
production include high fertility, cytoplasmic compatibility, 
biotic stress resistance, and environmental adaptability , 
for the successful conversion and development of high-
performing hybrids.

Principal Component Analysis (PCA) is a multivariate 
statistical tool, initially pioneered by Pearson in 1901 and 

further developed independently by Hotelling in 1933. The 
primary objective of PCA is to identify the minimum number 
of components that can explain the maximum variability 
within the total variability, as highlighted in studies by 
Anderson (1972) and Morrison (1982). Additionally, PCA 
facilitates the ranking of genotypes based on their PC 
scores. By utilizing only a few components, PCA allows 
each sample to be represented by a relatively small 
number of values, in contrast to the potentially thousands 
of variables, a technique elaborated by Ringner, 2008. 
PCA transforms a set of possibly correlated variables 
into a set of linearly uncorrelated variables. PCA can be 
employed to identify germplasm characterization features, 
visualize individuals’ differences and relationships, and 
assess their contribution to total variation (Singh et al., 
2016 and Martínez-Calvo et al., 2008) and This method 
is particularly valuable for screening large number 
of genetic resources by a large number of descriptor 
variables (Beiragi et al., 2001) and Golbashy et al., 
2010). In the current study, this method was employed 
to characterize rice maintainer lines to identify promising 
ones for exploitation in hybrid rice breeding.

The experiment was conducted at the Regional Agricultural 
Research Station, Jagtial, Telangana, India during kharif, 
2016 (June–October). A total of 40 genotypes (Table 1) 
were laid in Randomized Block Design (RBD) with two 
replications and a spacing of 20×15 cm2 . Twenty-eight 
days old seedlings were transplanted in the main field 
and all the necessary package of practices were followed 
to raise a healthy crop. Observations were recorded on 

Table 1. List of rice genotypes (maintainer lines) utilized for the study

S.No. Genotype Source S.No. Genotype Source
1 B1 RARS, Jagtial 21 B24 RARS, Jagtial
2 B2 RARS, Jagtial 22 B35 RARS, Jagtial
3 B3 RARS, Jagtial 23 B42 RARS, Jagtial
4 B4 RARS, Jagtial 24 B86 RARS, Jagtial
5 B5 RARS, Jagtial 25 B88 RARS, Jagtial
6 B6 RARS, Jagtial 26 JMS11B RARS, Jagtial
7 B7 RARS, Jagtial 27 JMS13B RARS, Jagtial
8 B8 RARS, Jagtial 28 JMS14B RARS, Jagtial
93 B9 RARS, Jagtial 29 JMS17B RARS, Jagtial
10 B11 RARS, Jagtial 30 JMS18B RARS, Jagtial
11 B12 RARS, Jagtial 31 JMS19B RARS, Jagtial
12 B13 RARS, Jagtial 32 JMS20B RARS, Jagtial
13 B15 RARS, Jagtial 33 JMS21B RARS, Jagtial
14 B16 RARS, Jagtial 34 CMS11B IRRI, Philippines
15 B17 RARS, Jagtial 35 CMS14B IRRI, Philippines
16 B18 RARS, Jagtial 36 CMS23B IRRI, Philippines
17 B19 RARS, Jagtial 37 CMS46B IRRI, Philippines
18 B20 RARS, Jagtial 38 CMS52B IRRI, Philippines
19 B22 RARS, Jagtial 39 CMS59B IRRI, Philippines
20 B23 RARS, Jagtial 40 CMS64B IRRI, Philippines
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Table 2. Eigen values, %of variance, and cumulative % of variance for 15 PC components

Traits PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15

Eigen value (Root) 3.16 2.67 2.17 1.76 1.58 0.98 0.8 0.62 0.44 0.36 0.18 0.14 0.1 0.04 0.01

Variance (%) 21.08 17.78 14.44 11.7 10.5 6.53 5.36 4.15 2.96 2.41 1.18 0.96 0.65 0.25 0.04

Cumulative variance 
(%) 21.08 38.86 53.3 65 75.5 82.04 87.39 91.54 94.51 96.92 98.09 99.06 99.71 99.96 100

yield and yield attributing characters and quality traits on 
five randomly selected competitive plants for each entry 
in each replication for 15 characters viz., days to 50% 
flowering (DFF), days to maturity (DM), plant height (PH), 
number of tillers plant-1 (NTPP), panicle length (PL), 
number of grains panicle-1(NGPP), kernel length (KL), 
kernel breadth (KB) L/B ratio (L/B), 1000 grain weight  
(TW), hulling percentage (HL), milling percentage (ML), 
head rice recovery percentage (HRR), grain yield plant-1 
(GYP), bran oil percentage (BO). PCA was performed 
using the “FactoMineR” package in R software version 
4.1.3 (Husson et al., 2020).

PCA is carried out to reduce the dimensionality of 
multivariate data by lowering the number of traits 
responsible to the maximum percentage of total variation 
of the experimental data in to new variables (components) 
so as to maximize the information in first few components 
(Stauffer et al., 1985; Abdi and Williams, 2010). In the 
present study, PCA analysis of fifteen traits revealed that 
only five principal components (PCs) with eigenvalues 
greater than 1 were significant. They accounted for the 
majority of the variability, representing approximately 

75.50% of the variance among the traits studied in 40 
maintainer lines. The variations accounted for by PC1, 
PC2, PC3, PC4, and PC5 were 21.08%, 17.78%, 14.44%, 
11.7%, and 10.5%, respectively (Table 2). Consequently, 
these five PCs were prioritized for further discussion in 
this study.

Scree plot obtained by drawing a graph between Eigen 
values and principal component numbers (Fig.1) 
explained the percentage of variance associated with 
each PCs. PC1 showed 21.08% variability with Eigen 
value 3.16. Similar results were reported by Nalajala 
et al., 2023. In determining significant traits, an Eigen 
vector coefficient with an absolute magnitude of 0.3 
or higher was used as a threshold, as reported by  
Badu-Apraku et al., 2006. Traits with a coefficient greater 
than 0.3 were deemed important due to their substantial 
effect. Conversely, traits with a coefficient value less 
than 0.2 were considered to have negligible impact on 
overall variation, as indicated by Laude and Carena 2015 
and Sharifi et al., 2018. Table 3 shows the eigenvectors 
(loadings) for the first five principal components.  
PC1 had most of the yield and its related features like the 

Eigen value (Root) 3.16 2.67 2.17 1.76 1.58 0.98 0.8 0.62 0.44 0.36 0.18 0.14 0.1 0.04 0.01 
Variance (%) 21.08 17.78 14.44 11.7 10.5 6.53 5.36 4.15 2.96 2.41 1.18 0.96 0.65 0.25 0.04 
Cumulative 
variance (%) 21.08 38.86 53.3 65 75.5 82.04 87.39 91.54 94.51 96.92 98.09 99.06 99.71 99.96 100 

 
 
 

 
 

 
 

Fig 1. Scree plot showing the variation between their Eigen value and the number of principal components 
 
 
 

Fig. 1. Scree plot showing the variation between their Eigen value and the number of principal components
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Table 3. Principal component analysis for 15 yield and its attributing traits

 Traits PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15
DF 0.21 -0.04 0.53 -0.26 0.21 -0.11 0.05 -0.04 0.06 -0.05 0.11 -0.07 0.72 0.1 -0.06
DM 0.14 0.02 0.5 -0.34 0.15 -0.16 -0.08 -0.31 0.2 -0.16 -0.18 0.02 -0.6 -0.03 0.05
PHT 0.11 -0.22 0.4 0.4 -0.14 0.18 0.19 0.06 -0.32 -0.27 0.51 -0.21 -0.2 -0.15 0.04
NTP 0.46 -0.11 0 0.03 -0.33 0.03 -0.35 0.07 -0.13 0.08 -0.03 -0.06 -0.09 0.71 -0.06
PL 0.3 -0.29 0.03 0.15 0 -0.06 0.7 0.17 0.05 0 -0.41 0.32 -0.04 0.09 -0.07
NGP 0.16 0.45 0.16 0.02 -0.09 0.04 0.28 -0.18 -0.2 0.73 0.02 -0.2 -0.07 -0.07 0
KL 0.2 -0.25 -0.06 0.35 0.48 0.07 -0.19 -0.24 0.11 0.28 0.1 0.22 0.03 0.02 0.54
KB -0.29 -0.42 0.17 0.02 -0.19 0.07 -0.13 -0.28 0.07 0.36 0.17 0.41 0 -0.03 -0.49
LB 0.32 0.13 -0.14 0.27 0.52 0.02 -0.13 0 0.02 -0.07 -0.01 -0.14 -0.08 -0.09 -0.67
GYP 0.44 -0.1 0.01 0.05 -0.36 -0.13 -0.35 0.04 -0.1 0.02 -0.26 0.08 0.14 -0.64 0.03
TGW -0.06 -0.54 -0.17 -0.05 -0.03 -0.08 0.1 -0.27 0.1 0.12 -0.19 -0.72 0.03 -0.03 -0.01
HL 0.27 -0.06 -0.09 -0.31 -0.07 0.64 0.07 0.22 0.52 0.09 0.23 -0.05 -0.06 -0.13 0.01
ML 0.22 0.23 -0.27 0.11 -0.29 -0.06 0.21 -0.68 0.23 -0.31 0.21 0.09 0.13 0.04 -0.02
HRR -0.11 0.14 0.22 0.46 -0.19 -0.36 -0.07 0.27 0.66 0.11 0.04 -0.14 -0.01 0.03 0
BO -0.21 0.16 0.28 0.33 -0.07 0.59 -0.11 -0.2 0.03 -0.15 -0.54 -0.07 0.15 0.07 0

number of tillers plant-1, panicle length, length-to-breadth 
(L/B) ratio, and grain yield plant-1. PC2 was associated 
with only one factor, the number of grains panicle-1. PC3 
is linked to morphological traits such as the days to 50% 
flowering, days to maturity, and plant height. PC4 was 
connected to quantitative traits like plant height, kernel 
length, head rice recovery, and bran oil content. PC5 was 
related to quantitative traits like kernel length and the L/B 
ratio.

In a biplot, vectors extending from the origin to each trait 
marker are used to visualize the relationships among 
different traits. As described by Yan and Rajcan, 2002, 
when a biplot accounts for a significant portion of the total 
variation, the correlation coefficient between any two traits 
can be estimated by the cosine of the angle between their 
vectors. Therefore, r = cos180° = -1, cos0° = 1, and cos90° 
= 0. The most significant variation in the biplot (Fig. 2) is 
attributed to traits such as grain yield per plant, number 
of tillers per plant, 1000 grain weight, kernel breadth, and 
number of grains per panicle, as indicated by the lengths 
of their respective vectors. These interrelationships are 
particularly crucial in rice breeding. The biplot reveals 
several key relationships. Yan and Rajcan 2002 noted 
that traits are positively correlated if the angle between 
their vectors is less than 90° (acute angles), negatively 
correlated if more than 90° (obtuse angles), and 
independent if exactly 90° (near perpendicular vectors). 
In the present study, a significant negative correlation 
between 1000 grain weight, kernel breadth, and the 
number of grains per panicle, was evidenced by the large 
obtuse angles between their vectors. A positive correlation 
between the number of tillers per plant and panicle length, 
both closely related to grain yield per plant was indicated 
by the acute angles. Additionally, the biplot suggested 
positive associations among grain yield per plant, hulling 

percentage, L/B ratio, days to maturity, and days to 50% 
flowering. These insights are integral to understanding 
trait interactions in rice breeding. Similar findings were 
reported by Yan and Rajcan 2002.

Biplots are also valuable for aiding in the selection of 
genotypes based on various traits. As illustrated in 
Fig. 2 and 3, it is evident that genotypes JMS18B and 
JMS20B excelled in the number of grains per panicle. 
Genotypes B42 and B3 were outstanding in terms of 
1000 grain weight and kernel breadth, while genotype 16 
was superior in grain yield per plant, number of tillers per 
plant, and panicle length. Fig. 3 highlights the selection 
process focusing on grain yield per plant, where genotype 
B18 demonstrated above-average yield during the culling 
of genotypes.

These findings align with those of Yan and Rajcan 2002. 
Their approach involved drawing a line through the 
biplot origin and the seed yield marker, followed by a 
perpendicular line to the seed yield line from the biplot 
origin. According to biplot analysis theory, if the biplot 
accurately represents the data, genotypes on the same 
side of the perpendicular line as the seed yield are 
expected to have above-average yields. Conversely, 
those on the opposite side are likely to yield below 
average.

Overall, the PCA and biplot analyses have proven to 
be robust tools in simplifying complex multivariate data 
and uncovering critical relationships and variations 
among traits. These findings are particularly valuable 
in rice breeding, offering a more understanding of trait 
interactions and assisting in the efficient selection of 
superior genotypes. The insights gained from this study 
align with previous research programs.
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Fig 2.  Loading plot showing contribution of variables towards the first two PCs 
 

Days to 50% flowering (DFF), days to maturity (DM), plant height (PH), number of tillers plant-1 (NTPP), 
panicle length (PL), number of grains panicle-1(NGPP), kernel length (KL), kernel breadth (KB) L/B ratio (L/B), 
1000 grain weight ( TW), hulling percentage (HL), milling percentage (ML), head rice recovery percentage 
(HRR), grain yield plant-1 (GYP), bran oil percentage (BO). 
 
 
 
 
 
 
 
 

 
   
 
 
 
 
 
 
 
 
Fig 3. Biplot showing the distribution of genotypes and contribution of all the haracters in first two principal 
components. 
 
 
 

Fig. 2. Loading plot showing contribution of variables towards the first two PCs

Days to 50% flowering (DFF), days to maturity (DM), plant height (PH), number of tillers plant-1 (NTPP), panicle length 
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hulling percentage (HL), milling percentage (ML), head rice recovery percentage (HRR), grain yield plant-1 (GYP), bran oil 
percentage (BO)

Fig. 3. Biplot showing the distribution of genotypes and contribution of all the haracters in first two principal 
components
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