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Abstract

especially in the Terai Zone of West Bengal.

Phosphorus (P) deficiency drastically limits rice production in tropical soils, necessitating the development of
P-efficient varieties. The present study evaluated the combining ability of eight rice parents and their 28 F, hybrids,
which were produced from a half-diallel cross, at the UBKV Research Farm in West Bengal during Kharif 2021-2023
under deficient P soil condition. The experiment was laid out in a randomized block design with three replications and
genotypes evaluated for 14 yield related traits. Combining ability was analyzed using Griffing’s Method II, Model |, to
estimate general (GCA) and specific (SCA) combining ability effects. Significant genetic variation was observed, with
GCA exceeding SCA for traits like plant height and grains per panicle, indicating strong additive effects, while SCA
dominated for P uptake and yield, suggesting non-additive contributions. Parents like MTU 7029 and Ranjit appeared
as superior combiners, while crosses such as CR Sugandh Dhan 909 x BBII and Paolum Sali x Ranijit exhibited high
hybrid vigor. Dominance variance surpassed additive variance across traits, favoring hybrid breeding strategies. These
findings indicate prospective parents and crosses that can improve rice production and P-use efficiency in low-P soils,

Keywords: Rice, combining ability, diallel, phosphorus, GCA, SCA

INTRODUCTION

Rice (Oryza sativa L.) is a staple food for more than half
of the global population (Fairhurst and Dobermann, 2002,
Susmi et al., 2025) and its production has significant
challenges due to phosphorus (P) deficiency, which
is a common issue in tropical and subtropical soils
(Birla et al., 2017)). Rice yields are limited by the poor

availability of phosphorus in weathered soils (Nishigaki
et al., 2019), especially in rainfed and upland systems
(Kato et al., 2016). Phosphorus is an essential mineral
for plant growth and supports metabolic processes
including photosynthesis and energy transfer (Malhotra
etal., 2018). The P shortage in about 50% of rice-growing
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regions is further exacerbated by soil fixation and limited
fertilizer supplies for smallholder farmers (Liu et al.,
2024)). In order to solve this limitation in a sustainable
manner, recent developments in breeding have placed a
strong focus on developing rice cultivars with increased
P-use efficiency (PUE) (Vandamme et al., 2016; Rose and
Wissuwa, 2012). A promising approach to improving rice
resilience is provided by genetic diversity for P-deficiency
tolerance combined with present phenotyping and
genomic technologies (Heuer et al., 2017).

Understanding the combining ability of parents and their
hybrids, along with the type of gene action governing
trait inheritance, is highly valuable for plant breeders
in selecting suitable parents and identifying promising
crosses for breeding programs (Sudharani et al., 2013).
Combining ability analysis provides a solid basis for
separating additive and non-additive gene effects in
rice breeding (Devi et al., 2015), which is essential to
understanding the genetic basis of P-deficiency tolerance
(Chaubey et al., 1994). Specific combining ability (SCA)
captures non-additive effects, which is essential for hybrid
development, whereas general combining ability (GCA)
represents additive genetic contributions, making it
perfect for pure-line selection (Shamuyarira et al., 2023).

According to studies, important characteristics including
root architecture, P uptake and yield components can be
improved to perform better in low-P environments (Niu et
al., 2013; Lynch, and Brown, 2001). Improved P acquisition
has been associated with genes such as PSTOL 1, which
promotes marker-assisted breeding (Azevedo et al., 2015;
Neelam et al., 2017). Diallel crosses have the ability to find
superior parents and hybrids, as indicated by recent field
experiments in P-deficient soils that showed significant
GCA and SCA impacts for yield and P uptake (Mutale,
2020; Santos et al., 2022). The present study evaluates
the ability of rice to grow under phosphorus-deficient soil
conditions in Terai Zone of West Bengal, India. The soll
conditions in the Terai Zone of West Bengal, India, are
characterized by low phosphorus availability and acidic
pH, as reported by Chand and Mandal (2000), Ghosh et
al. (2005), Maji et al. (2012), and Vishnupriya et al. (2024)
The recent researches shows that use of half-diallel
mating design to study hybrid vigor and additive genetic
effects under phosphorus-deficient soil conditions, aiming
to identify parent lines and crosses with strong general
and specific combining ability (GCA and SCA) for traits
important in phosphorus stress tolerance. Therefore,
it is essential to develop P-efficient rice cultivars due to
nutrient scarcity and climate variability endanger global
food security (Navea et al., 2024).

MATERIALS AND METHODS

The field experiments were conducted at the Research
Farm of Uttar Banga Krishi Viswavidyalaya (UBKV),
Pundibari, Cooch Behar, West Bengal, India, across the
Kharif seasons of 2021 to 2023. The Terai agroecological
zone is located at 26°23'59” N latitude, 89°23'22" E

longitude, and 72 meters above sea level, the site features
phosphorus-deficient soils typical of the region. During
Kharif, 2021, a preliminary evaluation of rice genotypes
was performed under low-P conditions (available P - 11.08
kg/ha) by Vishnupriya et al. (2024) to select eight diverse
parents: CR Sugandh Dhan 909, Paolum Sali, Ranijit,
Banga Bandhu (white), Uttar Lakshmi, BBIl, MTU 7029,
and Uttar Sona. Selection criteria included agronomic
performance and P-acquisition potential. In Kharif 2022,
these parents were crossed in a half-diallel design without
reciprocals (Griffing, 1956), producing 28 F, hybrids.
The 28 hybrids and along with their eight parents were
evaluated in P-deficient soil, in a randomized block design
with three replications, during Kharif 2023. Fourteen traits,
namely, days to 50% flowering, days to 100% flowering,
plant height (cm), number of productive tillers, flag leaf
length (cm), flag leaf width (cm), number of panicles
per plant, panicle length, number of grains per panicle,
number of spikelets per panicle, test weight (g), dry shoot
weight (g/plant), phosphorus uptake (mg/plant) and grain
yield (g/plant) were observed. Phosphorus uptake was
quantified using the Ammonium metavanadate method
after tissue triple acid digestion (Jackson and Patterson,
1973).

Assessment of GCA and SCA was done by Griffing’s
Method Il, Model | (fixed effects) for a half-diallel cross
(Griffing, 1956). Variance components (02GCA and
02SCA) were derived to evaluate additive and dominance
effects, with ANOVA partitioning the total variance into
GCA, SCA and error components (Hayman, 1954). Data
were analyzed using SPAR DOS-Box software with
significance levels set at P < 0.05 and P < 0.01.

RESULTS AND DISCUSSION

The combining ability analysis of eight rice parents
and their 28 F1 crosses under phosphorus-deficient
conditions revealed assessment of genetic variation and
breeding potential for developing phosphorus-deficiency-
tolerant rice varieties under low phosphorus soil
condition. Mean performances of the parents and crosses
(Table 1) showed significant trait diversity among parents
and hybrids. The cross CR Sugandh Dhan 909 x BBII
exhibited the earliest flowering, a trait associated with
efficient resource allocation under P stress (Feng et al.,
2021). Early flowering may allow plants to complete their
reproductive phase before severe P depletion occurs,
reducing yield losses (Malhotra., 2018). The cross, Uttar
Lakshmi x BBIl showed delayed flowering, possibly due to
prolonged P acquisition efforts, as observed in P-stressed
genotypes with enhanced root foraging (Nadeem et al.,
2022). However, delayed maturity under P deficiency
can be detrimental if P availability remains critically low
during grain filling stage (Rose et al., 2013; Rose et
al.,, 2016). Among the crosses, Banga Bandhu (white)
x Uttar Sona and Paolum Sali x Ranjit represented tall
and shortest plant respectively. Shorter genotypes, such
as Uttar Sona, may exhibit better P-use efficiency (PUE)
by reducing vegetative biomass and allocating more P
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to grain development (Heuer et al., 2017). Also, taller
genotypes like Paolum Sali may require higher P uptake
to sustain growth, making them more susceptible to
P deficiency (Chin et al., 2011). Ranijit x Uttar Lakshmi
produced the highest number of grains and spikelets
per panicle, indicating strong combining ability for yield
under P stress. This could be attributed to improved P
remobilization from vegetative tissues to grains (Khan
et al., 2023). On the other hand, Uttar Lakshmi x BBII
had the lowest grain count, possibly due to poor P
assimilation or sink strength under stress (Xu et al,
2022). Banga Bandhu (white) x Uttar Lakshmi achieved
the highest grain yield, while MTU 7029 had the lowest,
strengthening the importance of parental selection for
P-stress tolerance. High-yielding crosses may possess
superior P-partitioning mechanisms, ensuring sufficient
P allocation to developing grains (Rao et al., 1999). CR
Sugandh Dhan 909 x MTU 7029 showed the highest P
uptake, likely due to enhanced root exudation of organic
acids or phosphatase enzymes that solubilize soil P
(Hocking, 2001; Israr et al., 2016). BBII had the lowest
P uptake, possibly due to inefficient P transporters or
restricted root proliferation (Hasan et al., 2016).

Analysis of variance (Table 2) revealed highly significant
genetic variability among parents and crosses for all traits
except days to 100% flowering, exhibiting significant
diversity exploitable for breeding phosphorus-efficient
rice varieties. The stability of flowering time across
generations suggests strong physiological regulation
under P stress, while the significant general (GCA)
and specific (SCA) combining ability effects revealed
complementary genetic architectures with additive effects
dominating morphological and yield-related traits (plant
height, panicle characteristics, test weight) and non-
additive effects contributing substantially to all traits. This
genetic architecture suggests dual breeding strategies
such as leveraging high-GCA parents like those with
superior panicle traits or shoot biomass for pure-line
improvement through recurrent selection (Gunasekaran
et al., 2023), while simultaneously exploiting heterosis
in high-SCA crosses for yield and P uptake (Singh et
al., 2025). The results emphasis the potential of hybrid
breeding for overcoming P limitation, as evidenced by
significant SCA effects, while maintaining the ability to
make predictable gains in important agronomic traits
through additive genetic effects.

Table 2. Analysis of variance of morphological characters for parents and crosses by Griffing’s approach

Source of df Mean sum of squares
variation Days to 50% Days to Plant height No. of Flag leaf Flag leaf No. of
flowering 100% (cm) productive  length (cm) width (cm) panicles per
flowering tillers plant
Replication 2 11.731 3.009 17.612 1.083 3.480 73.542 6.481
Treatments 35 459.380" 492.733" 1003.023" 109.162" 20.077" 0.175" 23.451"
Parents 7 460.567" 564.615 2170.570" 186.185 82.727° 0.261° 20.232"
Crosses 27 473.137 492.346" 714.467" 69.373" 4.276" 0.159" 22.598"
Parents Vs - . - . - -
Crosses 1 796.252 2.199 621.944 644.292 8.143 0.010 69.001
Error 70 8.179 7.762 14.886 0.369 0.381 0.003 0.341
Total 107 16674.296 17794.991 36182.656 3848.667 729.489 6.3777 844.769
*, ** Significant at 5% and 1% levels of probability, respectively
Table 2 (Continued)
Source of df Mean sum of squares
variation Panicle No. of No. of Test weight Dry shoot Phosphorus Grain yield
length (cm) grains per spikelet per (g) weight (g/ uptake (mg/ (g/plant)
panicle panicle plant) plant)
Replication 2 0.430 3.028 20.083 0.371 0.355 0.013 0.363
Treatments 35 31.967" 1868.571" 2737.760" 22.264" 274.520" 19.826° 390.732"
Parents 7 55.783" 92.804" 1829.610” 40.372" 63.493" 16.521" 648.321"
Crosses 27 26.001" 1934.379” 2762.937" 17.414" 194.813" 21.368" 252.692"
Eare”ts Vs 1 26.353" 6675.482"  8415.027°  26.479" 3903.749"  1.357" 2314.759"
rosses
Error 70 0.390 9.856 21.245 0.161 0.389 1.120 0.602
Total 107  1147.003 66096.000 97348.917 791.276 9636.169 66062.106 62575.290
*, ** Significant at 5% and 1% levels of probability, respectively
146
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The observed variability in general combining ability
(GCA) and specific combining ability (SCA) (Table 3)
suggests that both additive and non-additive gene effects
influence P-deficiency tolerance. Parents with high GCA
such as CR Sugandh Dhan 909 likely possess dominant
alleles for PUE traits, such as root architecture or P
transporters (Van et al., 2016). Superior crosses such as
Ranjit x Uttar Lakshmi may benefit from complementary
gene interactions, enhancing P acquisition and utilization
(Wang et al, 2010). The identification of high-performing
crosses such as CR Sugandh Dhan 909 x BBII for
earliness, Ranijit x Uttar Lakshmi for grain yield, provides
a foundation for breeding programs targeting P-deficient
soils.

The general combining ability (GCA) analysis (Table 4)
identified several parental lines with significant genetic
contributions to key traits under phosphorus-deficient
conditions, providing valuable resources for breeding
programs targeting improved P-use efficiency. Five
parents such as Uttar Sona, MTU 7029, Paolum Sali,
Uttar Lakshmi, and Banga Bandhu (white) showed
significant negative GCA effects for days to flowering,
revealing their high capacity to pass on earliness alleles to
offspring, an essential adaption mechanism that permits
the reproductive cycle to be completed before significant
P depletion takes place (Balemi and Negisho, 2012).
For plant height, Uttar Sona exhibited the most dramatic
negative GCA effect, followed by BBIl, Banga Bandhu
(white), MTU 7029 and Uttar Lakshmi, suggesting these
parents carry valuable alleles for developing compact
varieties with reduced lodging risk and improved resource
allocation under phosphorus limited conditions (Lynch,
2017). The analysis revealed distinct parental strengths
for yield components, with Ranjit showing high positive
GCA for panicles per plant, panicle length, and grains
per panicle, Banga Bandhu (white) excelling in spikelets
per panicle and grain yield and MTU 7029 indicating
superior GCA for flag leaf length, test weight, dry shoot
weight and P uptake, confirming its known PUE potential
through enhanced photosynthetic capacity and nutrient
acquisition efficiency. The consistent GCA patterns across
multiple traits indicate predominantly additive genetic
control, supporting their use in pure-line breeding through
conventional pedigree (Yan et al., 2017) or recurrent
selection methods (Ayiecho and Nyabundi., 2025), while
also offering opportunities for strategic trait pyramiding by
combining complementary parents (Peng et al., 2014) like
Uttar Sona (early maturity), Banga Bandhu (high yield),
and MTU 7029 (PUE) in single varieties.

The analysis of specific combining ability (SCA) analysis
(Table 5) revealed significant non-additive genetic
interactions revealing the potential for exploiting heterosis
in rice breeding programs. The crosses such as CR
Sugandh Dhan 909 x BBIl and Banga Bandhu (white) x
Uttar Lakshmi exhibits strong negative SCA for days to
50% flowering, indicating hybrid vigor for earliness as a

potential P-stress adaptation mechanism (Rao, 2021),
while other combinations like Ranjit x Banga Bandhu
(white) showed delayed flowering, suggesting alternative
strategies for P acquisition (Zemunik et al., 2015). For
grain yield, superior crosses including Paolum Sali x
Ranjit, CR Sugandh Dhan 909 x BBII and Banga Bandhu
(white) x Uttar Sona exhibited significant positive SCA
effects, reflecting robust heterosis for productivity under P
limitation. Phosphorus uptake was particularly enhanced
in CR Sugandh Dhan 909 x BBIl (24.517) and Paolum
Sali x Ranjit, indicating specific hybrid advantages in
P acquisition efficiency through complementary root
architectures (Lambers et al., 2006) or P transporter
systems (Gu et al., 2016). The negative SCA effects were
observed for vegetative traits such as plant height (Paolum
Sali x MTU 7029) and tiller number (Uttar Lakshmi x MTU
7029) revealed adaptive reductions in vegetative growth
under P stress which helps in the hybrid combinations
can overcome P stress through various mechanisms,
including altered phenology, improved resource
partitioning, enhanced nutrient acquisition, and modified
growth patterns (Nord et al., 2011), providing useful
knowledge for developing high-performing rice varieties
for low-P environments through targeted exploitation of
non-additive genetic effects.

The genetic variance estimates (Table 6) revealed a
complex interaction between additive and non-additive
genetic effects, with dominance variance (0?SCA)
exceeding additive variance (0?*GCA) for all traits,
indicating the predominant role of non-additive gene
action in phenotypic variation under low-phosphorus
soil conditions (Bispo, 2024). However, the o*GCA/
02SCA ratio exceeded unity for key developmental and
yield-related traits including days to 50% flowering,
days to 100% flowering, plant height, grains per panicle,
and spikelets per panicle, indincating that additive
effects remain substantial for these traits, particularly in
controlling flowering time and panicle architecture. The
exceptionally high dominance variance observed for
number of spikelets per panicle suggests strong potential
for exploiting heterosis through hybrid breeding (Meena
et al., 2017), especially for complex yield components
and phosphorus uptake efficiency, as shown by superior
performance of specific crosses including CR Sugandh
Dhan 909 x MTU 7029 and Banga Bandhu (white) x Uttar
Lakshmi in mean performance. These indicates that the
non-additive effects dominate overall genetic architecture
and therefore, breeding approaches that focus on both
additive variance through recurrent selection of superior
parents like Ranjit and MTU 7029 is used for pure-line
improvement, and dominance variance through targeted
hybridization to maximize heterotic effects is used for
yield and nutrient efficiency traits in low-phosphorus
environments.

The present study on combining ability analysis of eight
rice parents and their 28 F, hybrids under phosphorus-
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Table 6. Estimates of genetic components of variance and degree of dominance for morphological characters

under phosphorus-deficient condition

Sources of DFF DHF PH NPT  FLL FLW  NPP PL NGP NSP TW DSWwW PU GY
variation

ngca 0.076 0.072 0.138 0.003 0.004 0.00003 0.0003 0.003 0.091 0.197 0.001 0.004 0.0001 0.016
o, 0.239 0.226 0.434 0.011 0.111 0.00009 0.0100 0.011 0.287 0.620 0.005 0.011 0.0330 0.018
ozgca/ozsca 1.696 1.610 3.086 0.077 0.079 0.00067 0.0710 0.081 2.044 4.406 0.033 0.081 0.2320 0.125
(ngcalczsca)o‘s 2.242 2273 4.078 0.101 0.105 0.00088 0.0930 0.107 2.701 5.823 0.044 0.107 0.3070 0.165
a?, 0.545 0.517 0.992 0.025 0.025 0.00021 0.0230 0.026 0.657 1.416 0.011 0.026 0.0750 0.040
%y 3.272 3.105 5.952 0.148 0.153 0.00129 0.1360 0.156 3.943 8.498 0.064 0.016 0.4480 0.241
0?,/0%, 4907 4.657 8.928 0.221 0.229 0.00193 0.0019 0.205 5.914 12.747 0.097 0.234 0.0070 1.038
02,/0%,+0%, 0.436 4.140 7.936 0.197 0.203 0.00172 0.1820 0.208 5.257 11.331 0.086 0.208 0.0062 0.567

gca = general combining ability, sca = specific combining ability, o2

= gca variance, 0® __ = sca variance, (02, _/ 0?

gea sca)

5= degree of

gca

dominance, 02, = additive variance, 02, = dominance variance, 02,/ (0%,+ 0%,) = predictability ratio, DFF — Days to 50% of flowering;
DHF - Days to 50% of flowering; PH-Plant height (cm); NPT-No. of tillers per plant; FLL — Flag leaf length (cm); FLW — Flag leaf width
(cm); NPP- No. of panicle per plant; PL-Panicle length (cm); NGP — No. of grains per panicle; NSP- No. of spikelet per panicle; TW-
Test weight (g); DSW — Dry shoot weight (g); PU-Phosphorus uptake (mg/plant); GY- grain yield (g/plant).

deficient conditions reveals substantial genetic potential
for developing low-P-tolerant varieties. Significant GCA
effects in parents like MTU 7029, Ranjit, and Banga
Bandhu (white) for traits such as phosphorus uptake,
grain yield, and yield components showed their value as
donors of additive genetic effects, suitable for pure-line
breeding. High SCA effects in crosses like CR Sugandh
Dhan 909 x BBIl and Paolum Sali x Ranijit for P uptake
and grain yield exhibits non-additive gene action, favoring
hybrid development. The predominance of dominance
variance over additive variance across traits suggests that
exploiting heterosis could maximize gains in P-stressed
environments, while the additive effects for flowering and
height traits support selection-based breeding program
in the Terai Zone’s P-deficient soils. Crosses combining
early maturity, efficient P uptake and high yield potential
are particularly promising for sustainable agriculture amid
nutrient constraints.
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