

Research Note Selection indices in Virginia groundnut (*Arachis hypogaea* L.)

R. P. Gupta, J. H. Vachhani^{*}, V. H. Kachhadia, M. A. Vaddoria and Praveen Kumar

Junagadh Agricultural University, Junagadh-362 001 (Gujarat). E-mail: jhvachhani@jau.in

(Received: 26 Aug 2014; Accepted: 22 Dec 2014)

Abstract

Sixty diverse genotypes of Virginia groundnut were evaluated in a randomized block design with three replications to study of selection indices under rainfed conditions during *kharif* 2013. Sixty-three selection indices involving pod yield per plant (X_1) and five yield components *viz.*, 100-kernel weight (X_2) shelling out-turn (X_3) , biological yield per plant (X_4) , harvest index (X_5) and kernel yield per plant (X_6) were constructed using the discriminant function technique. Discriminant function analysis indicated that selection efficiency of the function was improved by increasing number of characters in the index. Among the single character index, 100-kernel weight exhibited higher genetic advance and relative efficiency over straight selection for pod yield per plant. The index based on four characters *viz.*, pod yield per plant, 100-kernel weight, shelling out-turn and kernel yield per plant recorded the highest genetic advance as well as relative efficiency and selection efficiency. These characters could be advantageously exploited in the groundnut breeding programmes.

Keywords

Groundnut, discriminate function, relative efficiency, selection indices.

Groundnut (Arachis hypogaea L.) is one of the most economic oilseed crops of the world. It is considered as the world's fourth largest source of edible oil and third most important source of vegetable protein (Desai et al., 1999). Yield in crops is a quantitative trait and has a complex genetic control mechanism and hence, direct selection is not much effective on it. Since, the economic part of groundnut known as pod is developed under the soil, the prediction of its performance based on aerial morphological characters is almost difficult (Weiss, 2000). The most desirable approach to improve characteristics such as pod yield is simultaneous selection based on related traits (Bos and Caligari, 2007). This can be done using selection index, which is multiple regressions of genotypic values on phenotypic values of several traits (Falconer, 1989). Furthermore, the selection indices approach aimed at determining the most suitable combination of traits with the intention of indirectly improving the pod yield in groundnut was well documented (Shettar, 1974; Bandyopadhyay et al., 1985 and Dobariya et al., 2008).

The plant breeder has certain desired plant characteristics in his mind while selecting for particular genotype and for this he applies various weights to different traits for arriving on decisions. The better way of exploiting genetic correlations with several traits having high heritability is to construct an index which combines information on all the characters associated with yield. This suggests the use of selection index, which gives proper weight to each of the two or more characters to be considered. Selection index was proposed for the first time by Smith (1936) on the basis discriminant function of Fisher (1936). Hazel and Lush (1942) and Robinson *et al.* (1951) showed that the selection based on such an index is more efficient than selecting individually for the various characters. Keeping these facts in view the present study was undertaken in order to construct selection indices for efficient selection in groundnut breeding programme.

Sixty genotypes of groundnut were sown in a Randomized Block Design (RBD) with three replications during *kharif* 2013. Each genotype was accommodated in a single row of 3.0 m length with a spacing of 60 cm between rows and 15 cm between plants within the row. The experiment was surrounded by two guard rows to avoid damage and border effects. The fertilizers in the experimental area was applied at the rate of 12.5 kg N_2 ha⁻¹ and 25.0 kg P_2O_5 ha⁻¹ as it is a recommended dose for kharif cultivation of groundnut in the region. Other recommended agronomical practices in vogue were followed for reaping good crop. Data were recorded on randomly selected five plants from each genotype and average value was used for the statistical analysis for 15 characters viz., days to 50% flowering, days to maturity, plant height (cm), number of primary branches per plant, number of mature pods per plant, 100-pod weight (g), 100kernel weight (g), sound mature kernel (%), shelling out-turn (%), biological yield per plant (g), harvest index (%), kernel yield per plant (g), pod yield per plant (g), oil content (%) and protein content (%). Discriminant function analysis described by Dabholkar (1999) was used to

construct the selection indices involving six characters, seed yield per plant (X_1) , number of primary branches per plant (X_2) , 100-seed weight (X_3) , biological yield per plant (X_4) , harvest index (X_5) and days to maturity (X_6) . For computing selection indices, seed yield per plant was considered as the dependent variable with the *relative efficiency of 100 per cent*. The model suggested by Robinson et al. (1951) was used for the construction of genetic advance as well as selection indices and development of a required discriminant function using six characters along with seed yield per plant.

A total of sixty three selection indices based on six characters constructed in all possible combinations revealed that the selection efficiency was higher over straight selection when selection was based on individual components (Table 1). 100-kernel weight showed a genetic advance of 13.85%, which was higher than those calculated for other characters including pod yield per plant suggested that 100-kernel weight proved to be better index selection based on one character.

The highest genetic gain of 20.24% was obtained when selection was simultaneously based on discriminant function of two characters, e.g. shelling out-turns (X_3) , biological yield per plant (X_4) . When, three characters, *e.g.* pod yield per plant (X_1) , shelling out turn (X_3) , kernel yield per plant (X_6) were taken together, the genetic advance increased to 25.24%. The maximum gain was achieved to 45.746% by taking four characters at a time, *i.e.* pod yield per plant (X₁), 100- kernel weight (X_2) , shelling out turn (X_3) , kernel yield per (Table 3). Combination of five plant (X_6) characters, *i.e.* pod yield per plant (X₁), 100-kernel weight (X_2) , shelling out turn (X_3) , harvest index (X₅), kernel yield per plant (X₆) at a time still recorded high genetic gain of 27.64%. The function that includes all the six characters gave the highest genetic advance (27.61%).

Thus, study revealed that the index which includes more than one character gave high genetic advance suggesting the utility of construction of selection indices for effecting simultaneous improvement of several characters. Hazel and Lush (1942) stated that the superiority of selection based on index increases with an increase in the number of characters under selection. Dhumale *et al.* (1992), Rao (1974), Dobariya *et al.* (2008) and Smith (1936) also were with the same opinion that an increase in characters results in an increase in genetic gain and that the selection indices improve the efficiency than the straight selection for yield alone. It is interesting to note that selection efficiency improved with an increase in number of characters in combination with yield. For example, average selection efficiency of 241.123% when one character was included in selection function. Similarly, the selection efficiency was 400.60% for two characters, 534.66% for three characters, 672.84% for four characters, 751.04% for five characters and 835.99% for six characters selection indices improve the selection efficiency than the straight selection for yield alone with an increase in the number of characters under selection (Table 2). Some of the selection indices with high relative efficiency listed in Table 3 indicated that the highest efficiency was observed with six characters combination (835.99%). Selection indices with six characters, *i.e.* pod yield per plant (X1), 100-kernel weight (X₂), shelling out turn (X₃), biological yield per plant (X_4) , harvest index (X_5) and kernel yield per plant (X_6) , therefore, appear to be more useful. It can be seen that pod yield/plant (X_1) , 100-kernel weight (X_2) , shelling out turn (X_3) , kernel yield per plant (X_6) were the characters being commonly involved in more number of the combinations, the next being biological yield per plant (X₄) and harvest index (X_5) in order (Table 2).

Keeping in view the basic philosophy of saving time and labour in a selection programme, it would be desirable to base the selection of few characters. In the present study, selection index based on six characters gave maximum genetic gain and high efficiency over straight selection but practically it is more cumbersome to use in the selection exercise. Hence, a practical plant and can give as maximum as possible genetic gain. In the present study, selection index based on four characters (pod yield per plant + 100-kernel weight + shelling out-turn + kernel yield per plant) showing genetic gain (45.75%) and selection efficiency (1385.16%) comparable to some extent of those based on more characters is desirable and practically possible to use. Breeders usually prefer the index which includes as minimum as possible the characters at a time.

References

- Bandyopadhyay, A., Arunachalam, V. and Venkaiah, K. 1985. Efficient selection intensity in early generation index selection in groundnut (*Arachis hypogaea* L.). *Theor. Appl. Genet.*, **71**: 300-304.
- Bos, I. and Caligari, P. 2007. *Selection Methods in Plant Breeding*; 2nd Edn., Germany, Springer Sciences & Business Media B. V.
- Dabholkar, A. R. 1992. *Elements of Biometrical Genetics*. Concept Publishing Company, New Delhi, pp. 444-478.
- Desai, B. B., Kotecha, P. M. and Salunkhe, D. K. 1999. Science and Technology of Groundnut: Biology, Production, Processing and Utilization. Naya Prokash, Calcutta, pp. 2-4.

- Dhumale, D. B., Deshmukh, D. T. and Chikhale, N. G. 1992. Selection indices in soybean. J. Maharashtra agric. Univ., 17(1):142-143.
- Dobariya, K. L., Odedra, R. K., Jivani, L. L., Ponkia, H. P. and Khanpara, M. D. 2008. Selection indices for yield improvement in groundnut (*Arachis hypogaea* L.). *Internat. J. of Bioscience Reporter*, 6: 299-330.
- Falconer, D. S. 1989. An Introduction to Quantitative Genetics. Oliver and Boyd, Edinburgh, London, pp.340.
- Fisher, R. A.1936. The use of multiple measurements in t axonomic problems Ann. Euge., 7: 179.
- Hazel, L. N. and Lush, J. L. 1942. The efficiency of three methods of selection. J. Hered., 33(11):393-399.
- Rao, L. 1974. Analysis of genetic variability and formulation of selection indices for yield in soybean [*Glycine max* (L.) Merrill]. *Mysore J. Agric. Sci.*, 8(1): 156.
- Robinson, H. F., Comstock, R. E. and Harvey, V. H. 1951. Genotypic and phenotypic correlations in corn and their implications in selection. *Agron. J.*, **41**: 353-359.
- Shettar, B. I. 1974. Variability pattern and formulation of selection index for yield in groundnut (Arachis hypogaea L.). *Mysore J. Agric. Sci.*, 8: 296-297.
- Smith, H. F. 1936. A discriminant function for plant selection. *Ann.Eugen.*, **7:** 240-250.
- Weiss, E. A. 2000. *Oilseed Crops*. (Second Ed.), Black Wellm Science Ltd., London. pp.53-92.

le 1. Average selection efficiency of different combination of chara					
No. of characters in the index	Selection Efficiency (%)				
One	241.123				
Two	400.600				
Three	534.656				
Four	672.840				
Five	751.044				
Six	835.992				

Table 1. Average selection efficiency of different combination of chara

Table 2. Highest selection efficiency with character combinations in Virginia groundnut

Sr. No.	Character			
		Efficiency		
		(%)		
1	100-kernel weight	419.35		
2	Shelling out-turn + biological yield/plant	612.76		
3	Pod yield/plant + shelling out-turn + kernel yield/plant	764.33		
4	100-kernel weight + shelling out-turn + harvest index	726.33		
5	Pod yield/plant + 100-kernel weight + shelling out-turn + kernel yield/plant	1385.16		
6	100-kernel weight + shelling out-turn + harvest index + kernel yield/plant	812.80		
7	Pod yield/plant + 100-kernel weight + shelling out-turn + harvest index	785.51		
8	Pod yield/plant + 100-kernel weight + shelling out-turn + harvest index + kernel yield/plant	837.05		
9	Pod yield/plant + 100-kernel weight + shelling out-turn + biological yield/plant + harvest	835.99		
	index + kernel yield/plant			

Table 3. Selection index, discriminant function, expected genetic advance in yield and relative efficiency from the use of different selection indices in Virginia groundnut

Sr. No.	Selection Index	Discriminant Function				Expected Genetic Advance	Relative Efficiency	
1	2			3			4	<u>(%)</u> 5
1	X_1 Pod yield/plant (g)	$0.752 X_1$		5			3.303	100.00
2	X_1 1 ou yield/plant (g) X_2 100-kernel weight (g)	0.752 X_1 0.916X ₂					13.849	419.35
3	X_3 Shelling out-turn (%)	$0.627X_3$					8.673	262.64
4	X_4 Biological yield/plant (g)	$0.810X_4$					10.748	325.46
5	X_5 Harvest index (%)	$0.574X_5$					8.194	248.13
6	X_6 Kernel yield/plant (g)	0.730 X ₆					3.010	91.17
7	$X_1.X_2$	$0.604 X_1$	+	0.937X ₂			15.106	457.41
8	X ₁ .X ₃	0.847 X ₁	+	$0.643X_3$			10.873	329.23
9	$X_1 X_4$	0.671 X ₁	+	$0.837X_4$			12.638	382.68
10	$X_1.X_5$	0.511 X ₁	+	$0.576X_5$			10.305	312.05
11	$X_1.X_6$	$1.070 X_1$	+	0.611X ₆			11.087	335.72
12	X ₂ .X ₃	0.959 X ₂	+	0.645 X ₃			17.762	537.84
13	X ₂ .X ₄	0.896 X ₂	+	0.799 X ₄			16.026	485.28
14	X ₂ .X ₅	$1.012 X_2$	+	0.549 X ₅			18.996	575.21
15	$X_2.X_6$	$0.577 X_2$	+	0.684 X ₆			13.228	400.55
16	X ₃ .X ₄	$1.005 X_3$	+	1.202 X ₄			20.236	612.76
17	X ₃ .X ₅	$0.228 X_3$	+	0.188 X ₅			4.699	142.31
18	X ₃ .X ₆	1.171 X ₃	+	0.634 X ₆			10.759	325.79
19	$X_{4}.X_{5}$	$0.724 X_4$	+	0.569 X ₅			9.231	279.53
20	$X_{4}.X_{6}$	$0.979 X_4$	+	0.644 X ₆			13.872	420.06
21	X ₅ .X ₆	$0.876 X_5$	+	0.629 X ₆			13.626	412.60
22	X ₁ .X ₂ .X ₃	0.805 X ₁	+	0.965 X ₂	+	$0.664X_{3}$	23.550	713.10
23	$X_1.X_2.X_4$	$0.673 X_1$	+	0.916 X ₂	+	$0.829X_4$	18.063	546.94
24	X ₁ .X ₂ .X ₅	0.494 X ₁	+	1.041 X ₂	+	$0.547X_{5}$	20.656	625.46
25	$X_1.X_2.X_6$	$0.008 X_1$	+	$0.944 X_2$	+	$1.509X_{6}$	16.727	506.51
26	$X_1.X_3.X_4$	0.923 X ₁	+	0.645 X ₃	+	$0.803X_4$	15.883	480.95
28	$X_1.X_3.X_6$	$-10.02X_{1}$	+	0.764 X ₃	+	$0.588 X_5$	25.242	764.33
29	$X_1.X_4.X_5$	1.367 X ₁	+	1.770 X ₃	+	15.08 X ₆	12.617	382.04
30	$X_{1}.X_{4}.X_{6}$	4.760 X ₁	+	0.532 X ₄	-	0.264 X ₅	15.085	456.77
31	$X_1.X_5.X_6$	0.516 X ₁	+	0.495 X ₄	+	4.756 X ₆	10.973	332.26
32	$X_2.X_3.X_4$	0.939 X ₂	+	0.562 X ₅	+	0.703 X ₆	19.095	578.21
33	$X_2.X_3.X_5$	1.035 X ₂	+	0.656 X ₃	+	$0.802 X_4$	23.987	726.33
34	$X_2.X_3.X_6$	0.857 X ₂	+	0.736 X ₃	+	0.597 X ₅	21.968	665.20
35	$X_2.X_4.X_5$	0.983 X ₂	+	0.808 X ₃	+	2.499 X ₆	18.098	548.02
36	$X_2.X_4.X_6$	0.946 X ₂	+	0.718 X ₄	-	0.549 X ₅	16.332	494.53
37	$X_2.X_5.X_6$	1.045 X ₂	+	0.764 X ₄	+	0.038 X ₆	19.547	591.88
38	X ₃ .X ₄ .X ₅	0.718 X ₃	+	0.519 X ₅	+	0.487 X ₆	15.316	463.79
39	$X_3.X_4.X_6$	0.780 X ₃	+	0.766 X ₄	+	0.646 X ₅	15.898	481.39
40	X ₃ .X ₅ .X ₆	0.783 X ₃	+	0.652 X ₅	+	2.262 X ₆	18.497	560.10
								(Contd.)

Tabl	e 3. (Contd.)								
1	2			3				4	5
41	X4.X5.X6	0.651 X ₄	+	0.494 X ₅	-	0.223 X ₆		8.224	249.03
42	$X_1.X_2.X_3.X_4$	0.892 X ₁	+	0.939 X ₂	+	0.667 X ₃	+	21.615	654.48
		$0.805 X_4$							
43	$X_1.X_2.X_3.X_5$	0.624 X ₁	+	$1.062 X_2$	+	0.783 X ₃	+	25.942	785.51
		0.548 X ₅							
44	$X_1.X_2.X_3.X_6$	- 6.814X ₁	+	7.519 X ₂	+	$0.7876X_3$	+	45.746	1385.16
	** ** ** **	6.356 X ₆		1.005.37		0.404.77			
45	$X_1.X_2.X_4.X_5$	2.626 X ₁	+	1.005 X ₂	+	0.104 X ₄	-	20.679	626.15
		0.273 X ₅							
46	$X_1.X_2.X_4.X_6$	4.672 X ₁	+	0.919 X ₂	+	0.493 X ₄	-	20.336	615.76
		4.638 X ₆							
47	$X_1.X_2.X_5.X_6$	0.372 X ₁	+	1.053 X ₂	+	0.565 X ₅	+	21.542	652.29
		$0.788 X_{6}$							
48	$X_1.X_3.X_4.X_5$	$3.010 X_1$	+	$0.772 X_3$	+	0.026 X4	-	18.473	559.34
		0.340 X5							
49	$X_1.X_3.X_4.X_6$	- 6.912X ₁	+	1.546 X ₃	+	$1.362X_4$	+	21.451	649.51
		$10.40 X_6$							
50	$X_1.X_3.X_5.X_6$	3.168 X ₁	+	0.918 X ₃	-	0.180 X ₅	-	18.995	575.15
		1.007 X ₆							
51	$X_1.X_4.X_5.X_6$	- 0.348X1	+	0.951 X ₄	+	$0.890X_{5}$	+	11.481	347.63
		1.016 X ₆							
52	$X_2.X_3.X_4.X_5$	$1.006 X_2$	+	0.739 X ₃	+	$0.758 X_4$	+	22.946	694.79
		0.613 X ₅							
53	X2.X3.X4.X6	0.866 X ₂	+	0.806 X ₃	+	0.692 X ₄	+	21.610	654.34
		1.759 X ₆							
54	X2.X3.X5.X6	0.943 X ₂	+	0.892 X ₃	+	0.615 X ₅	+	26.843	812.80
		2.243 X ₆							
55	$X_2.X_4.X_5.X_6$	$1.072 X_2$	+	0.649 X ₄	+	0.447 X ₅	+	18.325	554.87
		0.340 X ₆							
56	$X_3.X_4.X_5.X_6$	0.886 X ₃	+	0.632 X ₄	+	0.553 X ₅	+	17.333	524.83
		1.515 X ₆							
57	$X_1.X_2.X_3.X_4.X_5$	$3.052 X_1$	+	$1.025 X_2$	+	0.793 X ₃	+	25.694	778.00
		$0.005 X_4$	-	0.395 X ₅					
58	$X_1.X_2.X_3.X_4.X_6$	- 7.701X ₁	+	0.917 X ₂	+	1.644 X ₃	+	26.803	811.59
		1.41 X ₄	+	11.37 X ₆					
59	$X_1.X_2.X_3.X_5.X_6$	$2.848 X_1$	+	$1.180 X_2$	+	0.937 X ₃	-	27.644	837.05
		0.168 X ₅	-	0.806 X ₆					
60	$X_1.X_2.X_4.X_5.X_6$	$2.022 X_1$	+	$1.010 X_2$	+	0.711 X ₄	+	23.387	708.14
		0.740 X ₅	+	1.771 X ₆					
61	$X_1.X_3.X_4.X_5.X_6$	$1.082 \ X_1$	+	0.940 X ₃	+	$0.522 X_4$	+	20.484	620.26
		0.321 X ₅	+	0.987 X ₆					
62	$X_2 X_3 X_4 X_5 X_6$	0.964 X ₂	+	0.909 X ₃	+	$0.624 X_4$	+	24.810	751.23
		0.531 X ₅	+	1.490 X ₆					
63	$X_1.X_2.X_3.X_4.X_5.X_6$	$1.015 X_1$	+	1.025 X ₂	+	0.960 X ₃	+	27.609	835.99
		$0.536 X_4$	+	0316 X ₅	+	0.991 X ₆			