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Abstract

Soybean productivity is highly sensitive to water availability, especially in rainfed and drought-prone environments.
Understanding the relationships among yield-related and morpho-physiological traits under varying moisture regimes
can guide breeding programs for drought resilience and yield stability. This study investigates the interrelationships
among morpho-physiological and yield-related traits in soybean under contrasting water regimes. Three soybean
crosses (NRC 37 x EC 602288, JS 20-98 x EC 602288, and KDS 1173 x EC 602288) derived F, progenies were
evaluated under drought and irrigated conditions. Simple correlation analysis was performed to elucidate the association
patterns among traits contributing to yield per plant (YPP). Across all crosses, under drought stress, physiological traits
viz. relative leaf water content, canopy temperature depression, specific leaf weight, normalized difference vegetation
index (NDVI) at pod filling stage, canopy temperature, root-to-shoot ratio showed strong correlations with yield per
plant (YPP). In contrast, phenological and reproductive traits, including days to 50% flowering (DFF), days to maturity
(DPM), number of pods per plant (NPP), and harvest index (HI), exhibited higher correlations under irrigated regimes.
The consistently high association of NDVI at R, stage with YPP across both conditions highlights its potential as a
rapid, non-destructive selection index for soybean improvement. These consistent trait associations across genetic
backgrounds support a dual strategy for breeding programs emphasizing physiological resilience under water stress
and reproductive development under optimal conditions.
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INTRODUCTION

Soybean (Glycine max (L.) Merrill) is one of the world’s
most important oilseed crops, valued not only for its high
seed vyield, nutritional value, and economic importance,
but also for its role in improving soil fertility through
symbiotic biological nitrogen fixation. Globally, soybean
contributes significantly to food, feed, and industrial oil
production. However, soybean is particularly vulnerable
to environmental fluctuations, with drought stress
emerging as one of the most persistent and damaging
abiotic constraints in subtropical rainfed agro-ecosystems
(Fenta et al, 2014). Among the leguminous
crops, soybean is especially susceptible to abiotic
stresses compared to species like cowpea (Vigna
unguiculata) and common bean (Phaseolus vulgaris)

(Silveira et al, 2003; Sepanlo et al, 2014,
Kachare et al, 2019), as well as other
field crops such as cotton, sorghum, and
chickpea(Younis et al., 2000; Talebi et al., 2013;

Gupta et al., 2021). Drought episodes occurring during
critical reproductive phases such as flowering and pod
filling result in the most severe yield losses, reducing
seed number, seed weight, and harvest index, while
also compromising seed quality (Manavalan et al., 2009;
Igiehon et al., 2021). It has been estimated that annual
soybean yield losses due to drought average around
40% (Specht et al., 1999), with reductions reaching
up to 80% under severe, prolonged water deficits
(Guimaraes-Dias et al., 2012; Du et al., 2020).
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Beyond restricting water availability, drought disrupts
an intricate network of physiological, morphological,
and phenological processes that govern plant growth,
development, and reproduction (Wang et al., 2024). In
soybean, water scarcity significantly impairs essential
physiological traits, including leaf water potential, relative
water content (RWC), stomatal conductance, root
exudation rate, and photosynthetic capacity (Hamayun et
al., 2010; Omae et al., 2005, 2007). Among these, relative
water content has been widely recognized as a reliable
integrative indicator of plant water status and drought
tolerance in crops such as soybean, French bean, and
mustard (Parsons & Howe, 1984; Rosales-Serna et al.,
2004). Notably, cultivars maintaining higher midday leaf
water content have been observed to produce more
pods under drought conditions, illustrating the critical
relationship between water economy and reproductive
success (Omae et al., 2005; Siddique et al., 1999).

Other important physiological traits associated with
drought resilience include canopy temperature
(CT), an indicator of transpiration cooling, where
lower canopy temperatures under drought reflect
better plant water status and higher vyield stability
(Araus et al., 2002). Similarly, specific leaf weight
(SLW) is a key morphological trait, with higher SLW
values typically associated with increased chlorophyll
content and photosynthetic efficiency under stress
(Jumrani et al, 2017). Additionally, root-shoot length
ratio, shoot-to-root biomass distribution, vigor index,
stomatal conductance, and leaf turgidity are significant
drought-adaptive attributes influencing plant survival
and productivity in water-limited conditions (Hossain
et al., 2015; Kachare et al., 2019; Sahu et al., 2022).
Remote sensing tools such as the normalized difference
vegetation index (NDVI) and infrared thermometry have
emerged as efficient, scalable, and non-destructive
methods for assessing plant water status and drought
responses. Carvalho et al. (2015) demonstrated the utility
of NDVI and infrared thermometry in evaluating drought
behaviour in Brazilian soybean cultivars, establishing
strong associations between NDVI, chlorophyll content,
photosynthetic rate, stomatal conductance, and
transpiration.

Previous studies have identified individual drought-
adaptive traits such as canopy temperature depression
(CTD), relative leaf water content (RLWC), and NDVI.
The present investigation attempted a multi-trait,
multi-environment correlation analysis involving three
biparental soybean crosses derived from diverse parental
combinations, with the drought-tolerant genotype EC
602288 serving as acommon donor parent. The objectives
were to identify key physiological and agronomic traits
associated with seed yield per plant (YPP) under drought
and irrigated conditions, and to assess the consistency of
these associations across diverse genetic backgrounds
and moisture regimes in soybean.

MATERIALS AND METHODS

The present investigation was carried out at the Post
Graduate Institute Research Farm, Mahatma Phule
Krishi Vidyapeeth (M.P.K.V.), Rahuri, Maharashtra,
India, over four consecutive seasons: Kharif-2022,
Summer-2022, Kharif-2023, and Summer-2023. The
experiments were conducted under both drought stress
and irrigated conditions on uniformly managed fields
with comparable soil fertility and topography. The study
involved F3; populations derived from three biparental
soybean crosses: NRC 37 x EC 602288, JS 20-98 x EC
602288, and KDS 1173 x EC 602288. These populations
were evaluated during Summer 2024 at the experimental
farm of MPKYV, Rahuri, under two contrasting moisture
regimes: drought stress and irrigated conditions. The
experiment was laid out in a Randomized Block Design
(RBD) with three replications to ensure precision and
minimize environmental variability.

The individual plant served as the experimental unit, and
all phenotypic observations and statistical analyses were
carried out at the single-plant level. For each cross, a
total of 240 individual F; plants were evaluated, including
120 plants under drought stress and 120 under irrigated
conditions. This total included an equal number of plants
sampled from each replication under each treatment.
The sample size was chosen to adequately capture the
inherent variability in early segregating generations and
to provide a robust dataset for statistical analysis. A total
of 18 quantitative traits associated with yield and drought
tolerance were recorded.

The breeding scheme began with crossing of selected
parental lines in Kharif 2022, followed by the raising of F
plants during Summer 2023. Subsequently, F, segregating
populations were developed in Kharif 2023, and advanced
to the F; generation for evaluation in Summer 2024.
Throughout the study, standard agronomic practices,
recommended fertilizer schedules, pest and disease
management, and other crop husbandry measures were
uniformly applied across all treatments and replications.

Drought Stress Management: Drought stress was imposed
by withholding irrigation at beginning of flower initiation
(R,) stage, while control plots were maintained under
optimal irrigation. Physiological measurements related
to drought tolerance were recorded between 11:00 AM
and 3:00 PM on bright, cloud-free days to ensure reliable
expression of stress-induced traits. Data were recorded
for days to 50% flowering (DFF), days to physiological
maturity (DPM), plant height (PH), number of clusters per
plant (NCP), number of pods per cluster (NPC), number
of pods per plant (NPP), number of primary branches
per plant (NPBP), hundred seed weight (HSW), number
of seeds per pod (NSP), harvest index (HI), relative leaf
water content (RLWC), canopy temperature (CT), canopy
temperature depression (CTD), specific leaf weight
(SLW), normalized difference vegetation indices (NDVI)
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at flower initiation stage (R,) stage, NDVI at pod filling
stage (R;) stage, root/shoot ratio (R/S), and yield per plant
(YPP).

Canopy Temperature (CT): Measured at the R, stage
using a non-contact infrared thermometer (Palmer Wahl
DHS115XEL) directed southward to capture canopy
readings without sensing the soil (Guendouz et al., 2012).
Observations were recorded between 11:00 AM and 3:00
PM under clear skies.

Canopy Temperature Depression (CTD): Calculated
by subtracting canopy temperature from ambient air
temperature.

Relative Water Content (RWC, %): Determined using
whole leaf by the formula:

RWC (%) = fresh weight (FW) - dry weight (DW) / turgid
weight (TW) - dry weight (DW) x100

Number of seeds per pod: Obtained by counting seeds
from ten randomly selected pods per plant and computing
the average.

Harvest Index (HI, %): = economic yield (seed yield )/
total above-ground biomassx100

Normalized difference vegetation index (NDVI): Recorded
using a GreenSeeker 505 handheld optical sensor during
R, and R, stages. The sensor detects red (656 nm)
and near-infrared (774 nm) wavelengths, with values
displayed as NDVI readings ranging from 0.00 to 0.99.

Root-to-shoot ratio: At physiological maturity, whole plants
were uprooted, and roots were separated, washed, oven-
dried at 60°C for 48 hours, and weighed. Root-to-shoot
ratio was determined as:

Root-to-Shoot Ratio = Root Dry Weight/Shoot Dry Weight

Specific Leaf Weight (SLW, g/cm?: Fully expanded
terminal leaflets at the R, stage were sampled. Leaf
area was measured using INDUS-Leaf Area Analysis
Software, dried at 70°C for 72 hours, and weighed. SLW
was computed as:

SLW (g/cm?) =leaf dry weight / leaf area

Simple correlation coefficients were computed separately
for drought and irrigated environments using SPSS v25.0,
with significance tested at 5% and 1% levels.

RESULTS AND DISCUSSION

The present study investigated the interrelationships
among morphological, physiological, and yield-related
traits in F, segregating progenies of three soybean
crosses (NRC 37 x EC 602288, JS 20-98 x EC 602288,
and KDS 1173 x EC 602288) under drought stress and

irrigated conditions. Simple correlation analyses revealed
differential patterns of association under contrasting
moisture regimes, highlighting the complex interactions
between drought tolerance mechanisms and yield
components. These findings have practical implications
for selecting traits contributing to yield stability under
moisture-limited environments.

Trait associations under drought conditions:Under
drought stress, distinctive patterns of trait associations
were observed across the three soybean crosses,
revealing critical physiological and yield-contributing traits
sustaining productivity under moisture deficit.

In the cross NRC 37 x EC 602288, days to 50% flowering
(DFF) showed significant positive correlations with
number of pods per plant (NPP; r = 0.96), number of
clusters per plant (NCP; r = 0.65), and yield per plant
(YPP; r = 0.70), (Table 1, Fig. 1A), reaffirming the
advantage of timely flowering for reproductive success
under drought stress (Blum, 2011). Relative leaf water
content (RLWC) exhibited strong positive associations
with canopy temperature depression (CTD; r = 0.82) and
YPP (r = 0.78), confirming the role of plant water status
in maintaining productivity during stress (Felisberto et al.,
2023). Canopy temperature (CT) negatively correlated
with YPP (r = -0.71), whereas CTD was positively
associated (r = 0.71), suggesting that genotypes with
cooler canopies and efficient transpiration cooling had
better yield under drought (Guendouz et al., 2012; Jumrani
and Bhatia, 2019). Notably, SLW demonstrated moderate
positive correlation with CTD (r = 0.65) and NDVI at R5 (r
= 0.62), while also being positively associated with YPP
(r = 0.61). Similar findings were reported by Jumarani
and Bhatia (2019), indicating the role of thicker leaves in
supporting yield through improved water-use efficiency
and photosynthetic performance. The root-to-shoot (R/S)
ratio in this cross showed a strong positive correlation
with YPP (r = 0.80) and RLWC (r = 0.81), and negative
correlation with CT (r = —0.82), suggesting that a larger
root system contributed to improved water uptake, lower
canopy temperature, and higher yield. These results
align with findings by Jumarani and Bhatia (2019), who
emphasized the importance of root traits in drought
resilience.

In the cross JS 20-98 x EC 602288, CTD (r = 0.89),
RLWC (r = 0.59), and SLW (r = 0.63) were significantly
and positively correlated with yield per plant (YPP),
highlighting their physiological relevance for sustaining
yield under water deficit (Table 3, Figure 1C). SLW also
had positive associations with CTD (r = 0.70) and NDVI
at R2 (r = 0.71), indicating efficient canopy maintenance.
R/S ratio positively correlated with YPP (r = 0.74) and
SLW (r = 0.87), suggesting that greater root allocation
supports water uptake and leaf development.

Similarly, in KDS 1173 x EC 602288, YPP showed highly
significant correlations with NPP (r = 0.95), number of
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(A) NRC 37 x EC 602288-Drought

(B) NRC 37 x EC 602288 - Irrigated
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Fig. 1. Correlation heatmaps depicting interrelationships among morpho-physiological and yield-related
traits in three soybean crosses under drought and irrigated conditions

Note: The figure illustrates correlation heatmaps for three soybean crosses evaluated under drought (left column) and
irrigated (right column) conditions. Positive correlations are represented by red shades and negative correlations by
blue shades, with intensity corresponding to the strength of the correlation (ranging from —1.00 to +1.00). The traits
analysed include growth, physiological, and yield-related parameters: Days to 50% flowering (DFF), Days to maturity
(DPM), Plant height (PH), Number of clusters per plant (NCP), Number of pods per cluster (NPC), Number of pods per
plant (NPP), Number of primary branches per plant (NPBP), 100 seed weight (HSW), Number of seeds per pod (NSP),
Harvest index (HI), Relative leaf water content (RLWC), Canopy temperature (CT), Canopy temperature depression
(CTD), Specific leaf weight (SLW), NDVI at R5 and R6, Root to Shoot ratio (R/S ratio), and Yield per plant (YPP).

pods per cluster (NPC; r = 0.85), harvest index (HI; r
= 0.73), RLWC (r = 0.92), CTD (r = 0.89), and SLW (r
= 0.91) (Table 5, Fig. 1 E). The strong association of
YPP with NPP and NPC emphasized the importance of

effective pod retention and seed setting under drought.
Negative correlation of CT with YPP (r = -0.89**) further
affirmed the role of canopy cooling. Additionally, NDVI
at R2 and R5 stages correlated positively with YPP,
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reflecting the importance of canopy development and
photosynthetic efficiency under moisture stress (Liang
et al.,, 2024). These correlations were in alignment with
the physiological frameworks proposed by Sofi et al.
(2018). Moreover, R/S ratio was positively associated
with YPP (r = 0.82), CTD (r = 0.89), and NDVI R5 (r =
0.82), supporting the role of deeper rooting and canopy
vigor in drought adaptation. Similar results were obtained
by Mundhe et al. (2021).

Trait Associations Under Irrigated Conditions:Under
well-watered conditions, the influence of physiological
traits on yield decreased, while morphological and yield
component traits emerged as more critical.

In the cross NRC 37 x EC 602288, plant height (PH)
demonstrated a strong positive correlation with hundred
seed weight (HSW; r = 0.96) and a moderate association
with yield per plant (YPP; r = 0.55) under irrigated
conditions (Table 2, Fig.1B). In contrast, physiological
traits such as canopy temperature depression (CTD)
and relative leaf water content (RLWC) exhibited weaker
correlations with yield. This pattern indicates that under
favourable, non-stress conditions, yield determination in
this cross is predominantly influenced by structural and
reproductive growth attributes rather than physiological
water status indicators.

In JS 20-98 x EC 602288, number of pods per plant
(NPP; r = 0.88) and PH (r = 0.58) were key yield drivers
(Table 4, Fig. 1D). NDVl values atR,and R, also correlated
positively with YPP (r = 0.82 and 0.47, respectively),
confirming its utility in predicting biomass and yield in
non-stress environments (Mundhe et al.,2021). SLW had
a substantial correlation with YPP (r = 0.82), underscoring
the role of leaf density in enhancing photosynthetic
efficiency under favourable moisture.

In KDS 1173 x EC 602288, Yield per plant correlated
significantly with Days to 50% flowering (r = 0.80), DPM (r
=0.64),PH(r=0.78),and NPP (r=0.88), (Table 6, Fig. 1F).
Interestingly, No. of pods per cluster (r = —0.60) and No.
of primary branches per plant (r = -0.52) were negatively
correlated with YPP, indicating that excessive branching
might divert assimilates away from pods. NDVI at R,
(r=0.89) remained a reliable canopy vigor indicator. Basal
and Szabd (2020) similarly reported that NDVI values
decreased significantly with increased drought intensity,
while irrigation positively influenced NDVI, as confirmed
through Partial Eta Squared analysis. Furthermore, earlier
studies by Suzuki et al. (2000) and Wang et al. (2001)
established positive correlations between irrigation levels
and NDVI, supporting its consistent performance as a
reliable canopy health indicator across various crops and
environments. These findings collectively corroborate
the present study’s observations, emphasizing NDVI's
potential as an effective tool for screening drought-
tolerant soybean genotypes.

Notably, SLW had an extremely strong association with
YPP (r = 0.97), highlighting the importance of a well-
developed photosynthetic apparatus. The R/S ratio was
negatively associated with YPP (r = —0.70), suggesting
that under irrigation, excessive root investment does not
translate into higher yield, possibly due to competition for
assimilates between root and reproductive sinks.

Across all crosses, it was evident that drought stress
enhanced the importance of physiological traits (CTD,
RLWC, SLW, NDVI) in determining yield, while under
irrigated conditions, yield was more strongly governed
by morphological and yield component traits (NPP, NSP,
HI, NDVI at R,). The contrasting trait-yield relationships
across environments highlight the necessity for
environment-specific breeding strategies in soybean
improvement programs.

Schonfeld et al. (1988) reported that cultivars exhibiting
drought resistance typically maintain higher relative
water content (RWC), a trend also observed in the
present investigation, where better-performing genotypes
recorded higher RWC values under stress. Relative water
content is widely recognized as one of the most reliable
indicators of plant water status, reflecting the physiological
consequences of cellular water deficits.

The significant positive correlation of canopy temperature
depression and relative leaf water content with yield
per plant under drought in all three crosses confirms
their reliability as indirect selection indices for drought
tolerance, aligning with earlier drought studies in soybean
by Jumrani and Bhatia (2019) and Kumar et al. (2017).

Similarly, consistent associations of NDVI at R, with seed
yield under both moisture regimes suggest that remote
sensing-based indices can serve as robust proxies for
canopy health, biomass status, and yield prediction in
soybean breeding programs, corroborating the utility of
NDVI reported by Mundhe et al. (2021).

The present study comprehensively elucidated the
interrelationships between morphological, physiological,
and vyield-related traits in three soybean crosses
evaluated under contrasting moisture regimes. The
correlation analysis highlighted that under drought
stress, physiological traits such as canopy temperature
depression (CTD), relative leaf water content (RLWC),
specific leaf weight (SLW), NDVI at R, and root-to-
shoot (R/S) ratio demonstrated consistently strong
positive associations with yield per plant (YPP) across all
crosses. These findings reinforce their utility as reliable
secondary selection criteria for enhancing drought
tolerance in soybean breeding programs.Conversely,
under irrigated conditions, agronomic and reproductive
traits including number of pods per plant (NPP), plant
height (PH), days to 50% flowering (DFF), and SLW were
more influential in determining yield outcomes. Notably,
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NDVI at R, stage exhibited significant and stable positive
correlations with yield under both stress and non-stress
environments, establishing it as a robust, non-destructive
proxy for canopy health, biomass accumulation, and yield
prediction. Among the three crosses, KDS 1173 x EC
602288 consistently displayed stronger trait associations
with yield under drought, particularly for RLWC, CTD,
SLW, and R/S ratio, suggesting superior physiological
adaptation potential in this cross. This underscores the
importance of integrating physiological resilience traits
into breeding pipelines targeting rainfed and drought-
prone agro-ecologies.
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