

Electronic Journal of Plant Breeding

Research Article

Evaluation of cowpea [*Vigna unguiculata* (L.) Walpers] lines developed through backcross breeding method for early maturity and high grain yield

Bakang Kedumetse Kgasudi^{1*}, Samodimo Ngwako¹, Goitseone Malambane¹, Motlalepula Pholo-Tait¹ and Lekgari A. Lekgari^{1,2}

¹Department of Crop and Soil Sciences, Botswana University of Agriculture and Natural Resources, Private Bag 0027, Gaborone, Botswana

²Department of Field Crops and Horticulture National Agricultural Research and Development Institute, Gaborone, Botswana

*E-Mail: bkgasudi@gmail.com

Abstract

Cowpea [*Vigna unguiculata* (L.) Walpers] is a herbaceous annual crop predominantly grown in the dry agro-ecologies of the tropics in Latin America, Africa and South Asia. It is an essential crop in Botswana, valued for its nutritional importance and adaptability to the country's semi-arid climate. The purpose of this study was to evaluate the genetic variability of the cowpea lines developed through backcross breeding method for early maturity and high grain yield. The offsprings were developed between August 2022 and April 2024 using B138 and ER7 as parental lines. Four F₁, 9 reciprocal F₁, 4 BC₁, 6 reciprocal BC₁, 8 BC₂ and 13 reciprocal BC₂ were produced and evaluated for various traits. Days to flowering ranged from 31 (EB-5F₁) to 37.00 days (EB9-9-3BC₂) while days to 50% flowering ranged from 34 days (EB-5F₁) to 40 days (BE3-2-1BC₂). The results of this study indicated that EB-5F₁, EB8-7-1BC₂ and EB8-7-2BC₂ can be exploited in breeding programmes targeting earliness and adaptation to short growing seasons. Seed yield per plant ranged from 16.10 g (EB-3F₁) to 134.62 g (EB4-1BC₁), with BE2-1-2BC₂ and EB5-6-1BC₂ yielding higher than ER7 but lower than B138. These lines are promising recombinants for further selection and improvement.

Keywords: Conventional breeding, backcrossing, cowpea, flowering, maturity, yield

INTRODUCTION

The productivity of cowpea is reported to be low in Sub-Saharan Africa, despite its importance in the diets of many households, with less than 600 kg/ha produced compared to a genetic potential grain yield of over 2000 kg/ha (Boukar *et al.*, 2019). Cowpea production in Botswana averages 300 kg/ha against a potential yield of 2500 kg/ha, making it difficult for farmers to meet the demand of the growing human population (Molosiwa and Makwala, 2020). Even though cowpea is considered a drought-tolerant crop that can grow in harsh climatic conditions with limited water, it is affected by a range of climatic factors that frequently result in low yields. The use of

unimproved varieties, insufficient input application, and poor agronomic practices during crop production further contribute to reduced yield (Horn *et al.*, 2022).

Improvement of cowpea for yield and earliness in Botswana has been pursued through integrated breeding and agronomic measures that combine evaluation of local germplasm, advanced selection methods, and optimized cultivation practices. Molosiwa and Makwala (2020) conducted a field evaluation in Botswana that identified exceptional local genotypes such as B137B which exhibited high seed yield and desirable agronomic traits.

In another study by Molosiwa *et al.* (2016), phenotypic characterization of Botswana's cowpea germplasm was undertaken to present genetic diversity based on agro-ecological zones. The variation in traits across districts may have been caused by the climatic conditions as they differ from each district. These evaluation provide the critical baseline information for breeding programs aimed at enhancing early maturing and high-yielding lines well adapted to the Botswana growing conditions.

A clear understanding of this genetic variability of cowpea is important to design and accelerate conventional breeding programs. Accurate assessment of genetic variability plays a role in the preservation and utilization of germplasm resources and improvement of cultivars. The genetic variability present among cowpea genotypes gives breeders the opportunity to select parental lines for hybridization with higher levels of desirable traits. Genetic variability is a pre-requisite in crop improvement programme as the breeders must quantify the fixable and non-fixable components of variation for an actual selection programme. Cowpea exhibits important forms of variations in qualitative traits such as plant type, seed coat colour and quantitative agronomic traits such as yield, maturity or stress tolerance (Boukar *et al.*, 2019).

Conventional plant breeding methods have been used for hundreds of years and remain widely used today to create new plant varieties. The backcross breeding method has been effectively employed in cowpea breeding programs (Owusu *et al.*, 2018) and the method allows breeders to enhance specific traits such as earliness and yield. Previous research conducted has demonstrated that cowpea varieties that mature in less than 60 days after planting can significantly contribute to early harvests, thereby improving food security (Metwally *et al.*, 2021; Owusu *et al.*, 2018). These early maturing varieties require minimal irrigation and are compatible with mechanized harvesting techniques (Aishwarya *et al.*, 2025; Khojambergenov *et al.*, 2025). Therefore, the purpose of this study was to evaluate the genetic variability of the cowpea lines developed through backcross breeding method for early maturity and high grain yield.

MATERIALS AND METHODS

The research experiment was conducted at the Botswana University of Agriculture and Natural Resources (BUAN) content farm, Sebele (altitude of 992 m, latitude of 24.33.40 S, and longitude of 25.56.37 E), Botswana under greenhouse condition. The two parental lines were selected based on their contrasting maturity periods and yield potential: B138, a late-maturing landrace requiring 91 days after sowing and yielding approximately 426.79 kg/ha, and ER7, an early-maturing variety that matures in 61 days and yields about 297.06 kg/ha. B138 produces reddish-brown seeds, whereas ER7 has cream-white seeds with a brown eye (Fig. 1). B138 was hybridized

with ER7 to generate the F_1 generation and backcrossed with B138 as the recurrent parent to create BC_1 and BC_2 populations during 2022 and 2024. Reciprocal crosses were also made to assess the maternal effects on the traits under study. The developed offsprings along with their parents were planted in the plastic pots replicated three times using a completely randomized design and evaluated in the greenhouse for physiological, morphological and yield performance. Agronomic practices were followed to raise healthy crops and fertilizers were applied as per the crop requirement.

Crossing program:

B138 (♀) \times ER7 (♂): F_1

ER7 (♀) \times B138 (♂): Reciprocal F_1 (RF_1)

F_1 (B138 \times ER7) (♀) \times B138 (♂): Backcross one (BC_1)

RF_1 (ER7 \times B138) (♀) \times B138 (♂): Reciprocal backcross one (RBC_1)

BC_1 (♀) \times B138 (♂): Backcross two (BC_2)

RBC_1 (♀) \times B138 (♂): Reciprocal backcross two (RBC_2)

Data Collection and Analysis: Data were collected on growth, yield and yield-related traits using cowpea descriptors (IBPGR Executive Secretariat, 1983) for plant height, number of branches, number of leaves, leaf area, days to first flowering, days to 50% flowering, days to first pod maturity, days to 90% pod maturity, days to maturity, number of pods per plant, pod length, pod width, number of seeds per pod, 100 seed weight, seed yield per plant and seed yield per plot. Data were collected from tagged plants in each replication and analyzed using the variability package in R programming language software.

RESULTS AND DISCUSSION

Genetic variation in cowpea is essential for cowpea improvement programs as a narrow genetic base can limit genetic gains in improved varieties. Previous studies have shown that genetic variation in cowpea is vital for expression of various traits, such as seed size, plant height and leaf area, which are closely linked to adaptation in plants (Herniter *et al.*, 2019). Further, genetic variability among cowpea landraces is crucial for conserving local varieties and serves as a foundation for developing improved varieties (Carvalho *et al.*, 2017). The present study revealed significant variation among the genotypes for growth, physiological yield and yield related characters.

Growth characters: Significant differences were observed for plant height where ER7 consistently taller than B138 and their offspring across all days after sowing (Table 1). All F_1 progenies were taller than B138 but shorter than ER7. The first backcross generations were taller than B138 but shorter than ER7 while $BE3-1BC_1$ was shorter compared to ER7 and B138 across all observation days. All RBC_1 generations were taller than B138 but remained

Table 1. Evaluation of parents, F₁, BC₁ and BC₂ population for plant height (cm)

GENOTYPES	PEDIGREE	14 DAS	28 DAS	42 DAS	56 DAS
B138	Landrace	41.13 b	44.00	46.47	44.27
ER7	Variety	115.70 a	111.30	110.17	106.50
BE-1F ₁	B138 X ER7	78.40 ab	77.40	82.60	80.63
BE-2F ₁	B138 X ER7	76.87 ab	72.60	76.77	76.13
BE-3F ₁	B138 X ER7	82.23 ab	84.07	76.00	71.23
BE-4F ₁	B138 X ER7	73.93 ab	75.53	79.50	71.67
EB-1F ₁	ER7 X B138	71.97 ab	74.90	78.03	75.70
EB-2F ₁	ER7 X B138	63.37 ab	58.50	67.40	65.37
EB-3F ₁	ER7 X B138	43.70 b	43.60	40.83	39.83
EB-4F ₁	ER7 X B138	72.10 ab	75.90	68.37	73.27
EB-5F ₁	ER7 X B138	102.03 ab	98.53	107.97	100.37
EB-6F ₁	ER7 X B138	57.97 ab	62.30	58.20	62.33
EB-7F ₁	ER7 X B138	57.07 ab	53.97	55.23	55.87
EB-8F ₁	ER7 X B138	68.80 ab	68.03	70.17	67.37
EB-9F ₁	ER7 X B138	66.17 ab	72.40	73.93	73.83
BE2-1BC ₁	BE-2F ₁ X B138	74.43 ab	74.13	75.00	74.90
BE3-1BC ₁	BE-3F ₁ X B138	38.23 b	40.00	41.73	36.80
BE3-2BC ₁	BE-3F ₁ X B138	63.20 ab	64.00	65.57	67.50
BE3-3BC ₁	BE-3F ₁ X B138	72.97 ab	75.43	80.53	73.93
EB4-1BC ₁	EB-4F ₁ X B138	69.70 ab	74.03	71.47	69.67
EB5-1BC ₁	EB-5F ₁ X B138	68.27 ab	74.23	71.57	72.00
EB8-1BC ₁	EB-8F ₁ X B138	77.37 ab	74.60	78.27	70.87
EB8-2BC ₁	EB-8F ₁ X B138	63.37 ab	64.37	65.00	66.60
EB9-1BC ₁	EB-9F ₁ X B138	60.43 ab	62.63	66.97	65.90
EB9-2BC ₁	EB-9F ₁ X B138	52.90 ab	54.33	57.67	54.57
BE2-1-1BC ₂	BE2-1BC ₁ X B138	41.90 b	43.93	49.73	43.90
BE2-1-2BC ₂	BE2-1BC ₁ X B138	65.50 ab	68.83	69.37	66.40
BE2-1-3BC ₂	BE2-1BC ₁ X B138	39.43 b	35.30	44.77	41.10
BE2-1-4BC ₂	BE2-1BC ₁ X B138	38.80 b	38.63	37.07	36.47
BE2-1-5BC ₂	BE2-1BC ₁ X B138	46.40 ab	46.07	46.33	45.77
BE2-1-6BC ₂	BE2-1BC ₁ X B138	56.83 ab	60.77	59.67	59.03
BE3-1-1BC ₂	BE3-1BC ₁ X B138	34.67 b	32.93	35.37	36.03
BE3-3-1BC ₂	BE3-3BC ₁ X B138	55.20 ab	51.90	52.23	51.17
EB5-1-1BC ₂	EB5-1BC ₁ X B138	58.17 ab	57.07	57.30	60.73
EB8-1-1BC ₂	EB8-1BC ₁ X B138	56.13 ab	53.90	57.50	57.00
EB8-1-2BC ₂	EB8-1BC ₁ X B138	57.17 ab	53.90	56.07	55.73
EB9-1-1BC ₂	EB9-1BC ₁ X B138	50.03 ab	53.63	49.13	52.03
EB9-1-2BC ₂	EB9-1BC ₁ X B138	46.70 ab	41.17	45.60	44.20
EB9-1-3BC ₂	EB9-1BC ₁ X B138	42.03 b	44.27	41.87	41.47
EB9-2-1BC ₂	EB9-2BC ₁ X B138	64.67 ab	64.67	69.00	71.10
EB9-2-2BC ₂	EB9-2BC ₁ X B138	43.60 b	41.53	39.00	39.70
EB9-2-3BC ₂	EB9-2BC ₁ X B138	41.73 b	46.53	54.83	51.97
EB9-2-4BC ₂	EB9-2BC ₁ X B138	43.13 b	41.40	40.80	44.07
EB9-2-5BC ₂	EB9-2BC ₁ X B138	68.23 ab	74.53	66.70	77.60
EB9-2-6BC ₂	EB9-2BC ₁ X B138	38.90 b	40.47	41.93	42.67
EB9-2-7BC ₂	EB9-2BC ₁ X B138	44.07 b	47.67	48.47	49.07
R ²		0.18	0.18	0.18	0.17
GM		59.69	60.22	61.48	60.53
LSD (0.05)		71.18	71.14	72.12	70.41

NOTE: DAS (Days After Sowing), R² (Coefficient of determination), GM (Grand Mean), LSD (Least Significant Difference)

Fig. 1. Seeds of B138 used as a recurrent parent and ER7 used as a non-recurrent parent for the development of improved cowpea lines

shorter than ER7 across all the days of data collection. In the BC₂ and RBC₂ generations, genotypes such as BE2-1-3BC₂, BE2-1-4BC₂ and BE3-1-1BC₂, EB9-1-2BC₂, EB9-1-3BC₂, EB9-2-2BC₂, EB9-2-4BC₂ and EB9-2-6BC₂ were shorter than both the ER7 and B138. Plant height at 56 DAS ranged from 36.03 cm (BE3-1-1BC₂) to 106.50 cm (ER7) with several genotypes being significantly shorter than ER7 and B138. Among the offspring that were shorter than the parents, most originated from crosses where ER7 served as the female parent in the initial crossing population.

Within each generation, certain genotypes were significantly taller than others, indicating scope for further selection to improve plant height. Plant height is an important trait as it influences the competitive ability of cowpea genotypes. Studies have shown that taller plants often exhibit better resilience to water scarcity, making plant height a key factor in determining the drought tolerance of cowpea varieties (Karuwal *et al.*, 2017). In another study to evaluate the genetic differences and correlation of characters in F₂ population of cowpea from IT98K-205-8 cross with IT98K-555-1 (Ajayi, 2023), the highest plant height (22.29 cm) was recorded in parental line IT98K-555-1. In contrast, the present study recorded ER7 as the tallest parental line compared to B138 and their offspring.

The F₁ and RF₁ generations had more branches compared to ER7 but less compared to B138 across all the days of data collection (Table 2). In the BC₁ generation, BE2-1BC₁ recorded more branches than both ER7 and B138 at 14 and 28 DAS but fewer branches at 42 and 56 DAS than B138. BE3-1BC₁ had the highest number of branches compared to ER7 but less compared to B138. BE3-2BC₁ and BE3-3BC₁ had higher number of branches compared to both ER7 and B138. With the RBC₁ generation, EB4-1BC₁ had more branches compared to both ER7 and

B138. BE2-1-1BC₂ and BE2-1-5BC₂ displayed the highest number of branches compared to both B138 and ER7. RBC₂ generation, had high number of branches compared to ER7. EB5-1-1BC₂ and EB8-1-1BC₂ had the highest number of branches than B138 at 56 DAS. Number of branches at 56 DAS ranged from 3.67 (B138) to 13.00 (BE2-1-1BC₂).

Number of branches at 56 DAS showed a significant variation among genotypes with BC₁, RBC₁, BC₂ and RBC₂ lines recording significantly higher values than both parental lines indicating genetic improvement for this trait in the offspring. BE2-1-1BC₂ (13.00) recorded the highest number of branches at 56 DAS compared to all the generations studied. The number of branches in cowpea is an important trait that significantly influences yield potential and agronomic traits. Studies have demonstrated that the number of branches per plant is positively correlated with pod yield in cowpea, indicating that an increased number of branches can lead to higher yields (Gerrano *et al.*, 2022). This relation was supported by the present study, wherein EB5-1-1BC₂ recorded the highest number of branches (11.67) followed by EB8-1-1BC₂ (11.00) and EB8-1-2BC₂ (9.33).

Physiological characters: Significant differences were observed among the genotypes for days to 50% flowering, and days to pod maturity (Table 3). The F₁ generation flowered later than ER7 but earlier than B138 except for BE-4F₁ (35.00) that flowered later than both the parental lines. Among the reciprocal F₁s, EB-5F₁ flowered earlier than both the parental lines. In the reciprocal BC₁ generation, EB4-1BC₁ flowered earlier than B138. Similarly, in the reciprocal BC₂ generation, EB8-7-2BC₂, EB9-10-1BC₂, EB9-10-2BC₂, EB9-10-3BC₂, EB9-10-5BC₂ and EB9-10-7BC₂ flowered earlier than B138. Days to first flowering ranged from 30.50 (EB-5F₁) to 37.00 days (EB9-9-3BC₂) while days

Table 2. Evaluation of parents, F₁, BC₁ and BC₂ population at 56 days after sowing for number of branches

GENOTYPES	PEDIGREE	56 DAS	GENOTYPES	PEDIGREE	56 DAS
B138	Landrace	9.33 ab	BE2-1-1BC ₂	BE2-1BC ₁ X B138	13.00 a
ER7	Variety	3.67 b	BE2-1-2BC ₂	BE2-1BC ₁ X B138	11.00 ab
			BE2-1-3BC ₂	BE2-1BC ₁ X B138	11.00 ab
BE-1F ₁	B138 X ER7	5.33 ab	BE2-1-4BC ₂	BE2-1BC ₁ X B138	10.67 ab
BE-2F ₁	B138 X ER7	5.33 ab	BE2-1-5BC ₂	BE2-1BC ₁ X B138	11.00 ab
BE-3F ₁	B138 X ER7	4.67 b	BE2-1-6BC ₂	BE2-1BC ₁ X B138	11.67 ab
BE-4F ₁	B138 X ER7	5.67 ab	BE3-1-1BC ₂	BE3-1BC ₁ X B138	11.33 ab
			BE3-3-1BC ₂	BE3-3BC ₁ X B138	11.00 ab
EB-1F ₁	ER7 X B138	6.00 ab			
EB-2F ₁	ER7 X B138	5.33 ab	EB5-1-1BC ₂	EB5-1BC ₁ X B138	11.67 ab
EB-3F ₁	ER7 X B138	6.33 ab	EB8-1-1BC ₂	EB8-1BC ₁ X B138	11.00 ab
EB-4F ₁	ER7 X B138	4.67 b	EB8-1-2BC ₂	EB8-1BC ₁ X B138	9.33 ab
EB-5F ₁	ER7 X B138	7.33 ab	EB9-1-1BC ₂	EB9-1BC ₁ X B138	7.00 ab
EB-6F ₁	ER7 X B138	5.33 ab	EB9-1-2BC ₂	EB9-1BC ₁ X B138	7.67 ab
EB-7F ₁	ER7 X B138	5.33 ab	EB9-1-3BC ₂	EB9-1BC ₁ X B138	8.33 ab
EB-8F ₁	ER7 X B138	6.33 ab	EB9-2-1BC ₂	EB9-2BC ₁ X B138	6.67 ab
EB-9F ₁	ER7 X B138	6.67 ab	EB9-2-2BC ₂	EB9-2BC ₁ X B138	8.33 ab
			EB9-2-3BC ₂	EB9-2BC ₁ X B138	7.00 ab
BE2-1BC ₁	BE-2F ₁ X B138	9.00 ab	EB9-2-4BC ₂	EB9-2BC ₁ X B138	5.67 ab
BE3-1BC ₁	BE-3F ₁ X B138	4.33 b	EB9-2-5BC ₂	EB9-2BC ₁ X B138	7.00 ab
BE3-2BC ₁	BE-3F ₁ X B138	9.67 ab	EB9-2-6BC ₂	EB9-2BC ₁ X B138	7.00 ab
BE3-3BC ₁	BE-3F ₁ X B138	10.33 ab	EB9-2-7BC ₂	EB9-2BC ₁ X B138	6.00 ab
EB4-1BC ₁	EB-4F ₁ X B138	10.33 ab	R ²		0.25
EB5-1BC ₁	EB-5F ₁ X B138	10.33 ab	GM		8.01
EB8-1BC ₁	EB-8F ₁ X B138	8.33 ab	LSD (0.05)		8.29
EB8-2BC ₁	EB-8F ₁ X B138	9.00 ab			
EB9-1BC ₁	EB-9F ₁ X B138	9.00 ab			
EB9-2BC ₁	EB-9F ₁ X B138	7.67 ab			

Note: DAS (Days After Sowing), R² (coefficient of determination), GM (Grand mean), LSD (Least Significant Difference). Different lowercase letters indicate p ≤ 0.05, as determined by analysis of variance

to 50% flowering ranged from 33.50 days (EB-5F₁) to 40.25 days (BE3-2-1BC₂). Days to first pod maturity ranged from 44 to 49 days after sowing. Among the F₁ generation, BE-2F₁ and BE-4F₁ reached first pod maturity earlier than ER7 but were not significantly different from B138 (44.00 days). The reciprocal F₁s, EB-1F₁, EB-2F₁, EB-4F₁, EB-7F₁ and EB-9F₁ matured earlier than ER7. Early flowering in cowpea is a crucial as it significantly impacts plant development and yield potential. The reciprocal F₁, EB-5F₁ flowered (31 days) earlier than both the parental lines. Similarly, reciprocal BC₁, EB4-1BC₁ and reciprocal BC₂ generation, EB8-7-2BC₂, EB9-10-1BC₂, EB9-10-2BC₂, EB9-10-3BC₂, EB9-10-5BC₂ and EB9-10-7BC₂ flowered earlier than B138 indicating the superiority of reciprocal crosses over direct crosses for early flowering. Similar studies also recorded a wide range in variation in flowering time as (Owusu, 2020)

observed the means of days to 50% flowering and days to first flower initiation of the cowpea F₁ progeny were lower than their mid-parent mean values and closer to the early maturing parent (Sanzi). Further, Ajayi (2023) reported that parent IT98K-205-8 flowered first with a mean value of 45 days, followed by IT98K-205- 8 × IT98K-555-1 (47 days), while IT98K-555-1 and IT98K-555-1 × IT98K-205-8 flowered late respectively at day 56 and day 55, which means that IT98K-555-1 can be considered responsible for late flowering when used as the male parent. Early flowering is particularly important in cowpea breeding for enhancing agricultural resilience to climate change, optimizing yields under drought conditions and pest management. According to Doumbia *et al.* (2013), early flowering varieties can significantly mitigate the adverse effects of climate change, allowing for timely harvesting and improved food security.

Table 3. Evaluation of parents parents, F₁, BC₁ and BC₂ population for duration

GENOTYPES	PEDIGREE	DF	DFF	DFPM	DNPM	DM
B138	Landrace	34.75 cdef	37.50 cdefg	44.00 f	50.00 c	58.00 a
ER7	Variety	31.75 jk	34.75 jk	46.00 d	49.00 d	53.00 d
BE-1F ₁	B138 X ER7	34.50 cdefg	38.25 abcde	47.00 c	50.00 c	53.00 d
BE-2F ₁	B138 X ER7	32.25 hijk	36.00 fghij	44.00 f	46.00 g	50.00 f
BE-3F ₁	B138 X ER7	32.00 ijk	35.00 ijk	48.00 b	51.00 b	56.00 b
BE-4F ₁	B138 X ER7	35.00 bcdef	38.00 bcdef	44.00 f	46.00 g	50.00 f
EB-1F ₁	ER7 X B138	34.00 efghi	37.00 efghi	44.00 f	50.00 c	58.00 a
EB-2F ₁	ER7 X B138	35.50 abcde	38.50 abcde	44.00 f	46.00 g	50.00 f
EB-3F ₁	ER7 X B138	35.00 bcdef	38.00 bcdef	48.00 b	51.00 b	58.00 a
EB-4F ₁	ER7 X B138	35.75 abcde	38.75 abcde	44.00 f	46.00 g	50.00 f
EB-5F ₁	ER7 X B138	30.50 k	33.50 k	48.00 b	51.00 b	56.00 b
EB-6F ₁	ER7 X B138	35.50 abcde	38.50 abcde	48.00 b	51.00 b	56.00 b
EB-7F ₁	ER7 X B138	36.00 abcde	39.00 abcde	44.00 f	50.00 c	58.00 a
EB-8F ₁	ER7 X B138	34.25 defgh	37.25 defgh	45.00 e	48.00 e	54.00 c
EB-9F ₁	ER7 X B138	36.25 abcd	39.25 abcd	44.00 f	46.00 g	50.00 f
BE2-1BC ₁	BE-2F ₁ X B138	35.00 bcdef	38.00 bcdef	47.00 c	50.00 c	56.00 b
BE3-1BC ₁	BE-3F ₁ X B138	36.00 abcde	38.75 abcde	49.00 a	52.00 a	56.00 b
BE3-2BC ₁	BE-3F ₁ X B138	34.75 cdef	37.75 cdef	45.00 e	48.00 e	54.00 c
BE3-3BC ₁	BE-3F ₁ X B138	34.00 efghi	38.00 bcdef	47.00 c	50.00 c	53.00 d
EB4-1BC ₁	EB-4F ₁ X B138	31.50 jk	34.50 jk	47.00 c	50.00 c	53.00 d
EB5-1BC ₁	EB-5F ₁ X B138	35.00 bcdef	38.25 abcde	47.00 c	50.00 c	53.00 d
EB8-1BC ₁	EB-8F ₁ X B138	34.50 cdefg	37.50 cdefg	47.00 c	50.00 c	56.00 b
EB8-2BC ₁	EB-8F ₁ X B138	34.25 defgh	37.75 cdef	47.00 c	50.00 c	53.00 d
EB9-1BC ₁	EB-9F ₁ X B138	36.00 abcde	40.00 ab	47.00 c	50.00 c	53.00 d
EB9-2BC ₁	EB-9F ₁ X B138	34.75 cdef	38.00 bcdef	47.00 c	50.00 c	53.00 d
BE2-1-1BC ₂	BE2-1BC ₁ X B138	35.75 abcde	38.75 abcde	49.00 a	52.00 a	56.00 b
BE2-1-2BC ₂	BE2-1BC ₁ X B138	31.75 jk	34.75 jk	46.00 d	49.00 d	53.00 d
BE2-1-3BC ₂	BE2-1BC ₁ X B138	34.50 cdefg	37.50 cdefg	46.00 d	49.00 d	53.00 d
BE2-1-4BC ₂	BE2-1BC ₁ X B138	35.50 abcde	39.50 abc	46.00 d	49.00 d	58.00 a
BE2-1-5BC ₂	BE2-1BC ₁ X B138	35.50 abcde	39.50 abc	46.00 d	49.00 d	53.00 d
BE2-1-6BC ₂	BE2-1BC ₁ X B138	32.50 ghijk	35.50 ghijk	46.00 d	49.00 d	53.00 d
BE3-2-1BC ₂	BE3-1BC ₁ X B138	37.25 a	40.25 a	49.00 a	52.00 a	56.00 b
BE3-4-1BC ₂	BE3-3BC ₁ X B138	32.00 ijk	35.00 ijk	49.00 a	52.00 a	56.00 b
EB5-6-1BC ₂	EB5-1BC ₁ X B138	36.50 abc	39.00 abcde	47.00 c	51.00 b	58.00 a
EB8-7-1BC ₂	EB8-1BC ₁ X B138	35.00 bcdef	38.00 bcdef	44.00 f	47.00 f	51.00 e
EB8-7-2BC ₂	EB8-1BC ₁ X B138	32.50 ghijk	35.00 ijk	44.00 f	46.00 g	50.00 f
EB9-9-1BC ₂	EB9-1BC ₁ X B138	35.50 abcde	39.00 abcde	46.00 d	49.00 d	53.00 d
EB9-9-2BC ₂	EB9-1BC ₁ X B138	36.25 abcd	39.25 abcd	46.00 d	49.00 d	53.00 d
EB9-9-3BC ₂	EB9-1BC ₁ X B138	37.00 ab	40.00 ab	49.00 a	52.00 a	56.00 b
EB9-10-1BC ₂	EB9-2BC ₁ X B138	32.00 ijk	35.00 ijk	49.00 a	52.00 a	56.00 b
EB9-10-2BC ₂	EB9-2BC ₁ X B138	34.50 cdefg	38.00 bcdef	44.00 f	48.00 e	53.00 d
EB9-10-3BC ₂	EB9-2BC ₁ X B138	34.50 cdefg	37.75 cdef	44.00 f	48.00 e	53.00 d
EB9-10-4BC ₂	EB9-2BC ₁ X B138	34.75 cdef	38.00 bcdef	47.00 c	50.00 c	56.00 b
EB9-10-5BC ₂	EB9-2BC ₁ X B138	32.25 hijk	35.25 hijk	46.00 d	49.00 d	53.00 d
EB9-10-6BC ₂	EB9-2BC ₁ X B138	36.00 abcde	39.00 abcde	47.00 c	51.00 b	58.00 a
EB9-10-7BC ₂	EB9-2BC ₁ X B138	33.25 fghij	37.25 defgh	46.00 d	49.00 d	53.00 d
R ²		0.06	0.61	1.00	1.00	1.00
GM		34.42	37.59	46.26	49.41	54.15
LSD (0.05)		2.09	2.15	0.00	0.00	0.00

Note: DF (days to flowering), DFF (days to 50% flowering), DFPM (days to first pod maturity), DNPM (days to 90% pod maturity), DM (days to maturity), R² (coefficient of determination), GM (grand mean), LSD (least significant difference). Different lowercase letters indicate p ≤ 0.05, as determined by analysis of variance

Ninety percent (90%) pod maturity occurred between 46 to 52 days after sowing (**Table 3**). Among the F_1 genotypes, BE-2F₁ and BE-4F₁ were the earliest to reach days to 90% pod maturity compared to both parental lines. The reciprocal F_1 progenies; EB-2F₁, EB-4F₁, EB-8F₁ and EB-9F₁ reached 90% pod maturity earlier than both their parental lines. With BC₁ generation, BE3-2BC₁ reached 90% pod maturity earlier than both the parental lines. The reciprocal BC₂ crosses; EB8-7-1BC₂, EB8-7-2BC₂, EB9-10-2BC₂ and EB9-10-3BC₂ reached days to 90% pod maturity earlier than both the parental lines. The genotypes reached physiological maturity between 50 and 58 days after sowing. The F_1 progenies, BE-2F₁ and BE-4F₁ reached physiological maturity (50.00 days) earlier than B138 and ER7. The reciprocal F_1 progenies, EB-2F₁, EB-4F₁ and EB-9F₁ were also the earliest to mature compared to both the parental lines at 50 days after sowing, while reciprocal BC₂ generation, EB8-7-1BC₂ and EB8-7-2BC₂ reached days to maturity earlier than both the parental lines (**Table 3**).

The harvest period for cowpea pods typically ranges from 5 to 9 weeks after sowing, with semi-early varieties becoming harvest readiness around the 7th week (Barro *et al.*, 2023). Previous studies have also shown that crossing cowpea lines with early flowering traits can lead to progenies to combine desirable attributes, such as early flowering and determinate maturing characteristics (Lazaridi *et al.*, 2023). In addition to optimizing yield under drought conditions, early flowering plays a vital role in pest management. Dzemo *et al.* (2010) emphasize that flowering and podding stages are critical periods where cowpea is vulnerable to pest infestations limiting increased and sustainable cowpea grain production. By developing early flowering varieties, breeders can strategically time flowering to avoid peak pest populations, thereby reducing the reliance on chemical pest control methods and promoting sustainable agricultural practices (Dzemo *et al.*, 2010).

The number of days to maturity indicated that there was an improvement in the F_1 , RF₁, BC₁, RBC₁, BC₂ and RBC₂ progenies as compared to ER7 and B138 parental lines. Most progenies matured earlier than the late maturing parental genotype (B138). Early maturity provide harvesting before the drought season approaches allowing improved yield productivity. Similar study by Owusu (2020) observed the means of days to 90% pod maturity and days to first pod maturity of the F_1 progeny were lower than their mid-parent mean values and closer to the early maturing parent (Sanzi).

Yield and yield related characters: Significant differences were observed among the genotypes for number of pods per plant, pod length, pod width, number of seeds per pod, 100 seed weight, seed yield per plant and seed yield per plot (**Table 4**). Number of pods per plant ranged of 5.25 (EB9-10-7BC₂) to 21.75 (EB4-1BC₁). The F_1 generation

has less number of pods per plant compared to both the parental lines with BE-1F₁ (20.00) recording same number of pods with B138. All the reciprocal F_1 s had less number of pods compared to both the parental lines. Similarly, BC₁ generation, had fewer pods than both the parents, although BE3-2BC₁ (20.00) was not significantly different from B138. The RBC₁ generation recorded less number of pods per plant except for EB4-1BC₁ (21.75) and EB8-BC₁ (21.50) not significantly different from ER7 but more than B138 (20.00). For the BC₂ and RBC₂ generations, all progenies had less number of pods per plant compared to both the parental lines, except for EB8-7-1BC₂ (20.00) and EB9-10-3BC₂ (20.25) that were not significantly different from B138 (**Table 4**).

Overall, most developed offsprings recorded fewer pods per plant than their parental lines. The reciprocal BC₁, EB4-1BC₁ (21.75) recorded non-significantly higher number of pods compared to ER7 (21.50) and B138 (20.00). This observation may indicate additive genetic effects, genetic relatedness, environmental conditions and the heritability of the trait. These factors collectively influence the expression of pod number in cowpea breeding programs, guiding selection strategies for improved yield. Similar variability in pod number was reported by Zaki and Radwan (2022) who observed the mean number of pods per plant of the developed crosses differed from 21.50 for the cross Cr7 x AI to 71.00 for the cross D331 x AI in F_1 s, and from 38.70 for the cross Cr7 x Com1 to 48.20 for the cross Cr7 x AI in F_2 s.

Pod length among the studied genotypes ranged from 15.28 cm (BE2-1-5BC₂) to 21.00 cm (BE3-3BC₁) (**Table 4**). The F_1 progenies; BE-1F₁ (17.28 cm) was longer than B138 but shorter than ER7. BE-2F₁ (15.40 cm) was shorter compared to both the parental lines whereas BE-3F₁ (16.75 cm) was not significantly different from B138 but shorter than ER7. BE-4F₁ (18.30 cm) was longer than B138 but short compared to ER7. In the RF₁, EB-4F₁ (16.28 cm) was shorter than both parents, while the remaining genotypes were longer than B138 but shorter than ER7. The BC₁ and RBC₁ progenies were longer in pod sizes than B138 but shorter than ER7, except for BE3-3BC₁ (21.00 cm) that was longer than both the parental lines. EB8-2BC₁ (15.58 cm) was shorter compared to both the parental lines. Similarly, most of the BC₂ and RBC₂ progenies were longer than B138 but shorter than ER7 except for BE2-1-1BC₂ (16.08 cm), BE2-1-5BC₂ (15.28 cm), BE2-1-6BC₂ (16.18 cm), EB9-9-2BC₂ (16.45 cm) and EB9-10-2BC₂ (16.25 cm) that were shorter than both the parental lines. BE3-4-1BC₂ (19.13 cm) was longer than B138 but not significantly different from ER7.

Significant variation was observed for pod length among parents, their F_1 crosses, backcross 1 and backcross 2 generations studied, where only BE3-4-1BC₂ (19.13 cm) recorded more pod length compared to all the studied

Table 4. Evaluation of parents, F_1 , BC_1 and BC_2 population for yield and yield contributing characters

Genotypes	PEDIGREE	NOPP	PL	PW	NOSP	HSW	SYP	SYPP
ER7	Landrace Variety	20.00 ab 21.50 a	16.53 pqrstu 19.08 b	2.30 cde 2.25 e	17.25 cddefgh 17.00 defghi	10.84 r 9.21 l	124.40 c 101.68 j	0.12 b 0.10 d
BE-1F ¹	B138 X ER7	20.00 ab	17.28 ijklmno	2.35 bcde	17.75 bcdef	10.93 q 12.01 m 11.43 j 11.85 f	88.48 o 73.17 y 83.97 t 80.15 w	0.09 e 0.07 g 0.08 f 0.08 f
BE-2F ¹	B138 X ER7	16.25 efg 13.50 ijk 12.00 kl	15.40 wx 16.75 opqrst 18.30 cdef	2.40 abcde 2.35 bcde 2.38 abcde	14.00 m 16.75 eighi 16.75 eighi	12.01 e 11.43 j 11.85 f	73.17 y 83.97 t 80.15 w	0.07 g 0.08 f 0.08 f
BE-3F ¹	B138 X ER7							
BE-4F ¹								
EB-1F ¹	ER7 X B138	6.25 p	17.30 hijklmn	2.33 cde	16.00 hijk	10.17 e	34.93 o	0.03 k
EB-2F ¹	ER7 X B138	15.50 fgij	18.05 fgij	2.43 abcd	16.75 eighi	10.78 u	45.39 i	0.05 i
EB-3F ¹	ER7 X B138	9.00 mnjo	17.08 klmnopq	2.38 abcde	16.50 fghij	10.42 a	16.10 t	0.02 i
EB-4F ¹	ER7 X B138	16.00 fgh	16.28 rstu	2.53 a	18.00 bcde	11.25 n	83.91 u	0.08 f
EB-5F ¹	ER7 X B138	9.00 mnjo	18.45 bcde	2.45 abc	18.25 bcd	11.18 p	64.01 d	0.05 h
EB-6F ¹	ER7 X B138	9.75 im	16.90 mnopqrst	2.38 abcde	17.00 defghi	9.15 m	52.42 j	0.05 i
EB-7F ¹	ER7 X B138	10.00 lm	17.03 klmnopqr	2.30 cde	16.50 fghij	10.11 g	38.61 n	0.04 j
EB-8F ¹	ER7 X B138	18.48 bcd	2.38 abcde	2.30 cde	15.75 ijkl	10.05 h	62.28 g	0.06 h
EB-9F ¹	ER7 X B138	11.50 kl	17.95 defghi	2.30 cde	17.25 cddefgh	10.22 d	82.50 v	0.08 f
BE2-1BC ₁	BE-2F X B138	18.75 bcd	2.43 abcd	16.75 eighi	10.79 t	107.40 e	0.11 c	
BE3-1BC ₁	BE-3F X B138	11.75 kl	17.50 bcdef	2.45 abc	17.50 bcdef	13.06 a	29.75 p	0.03 k
BE3-2BC ₁	BE-3F X B138	20.00 ab	2.30 cde	17.75 bcdef	11.77 h	131.43 b	0.13 a	
BE3-3BC ₁	BE-3F ₁ X B138	19.75 abc	2.33 cde	17.00 defghi	11.38 l	104.27 h	0.10 d	
EB4-1BC ₁	EB-2F X B138	21.75 a	18.13 cddefg	2.30 cde	16.25 ghijkl	12.04 d	134.62 a	0.13 a
EB5-1BC ₁	EB-5F X B138	17.50 cdef	2.40 abcde	17.75 bcdef	10.66 x	108.35 d	0.11 c	
EB8-1BC ₁	EB-8F X B138	21.50 a	16.98 lmnopqr	2.38 abcde	16.50 fghij	9.13 n	98.52 l	0.10 d
EB8-2BC ₁	EB-8F X B138	17.50 cdef	2.43 abc	17.50 bcdef	10.58 y	88.30 o	0.10 d	
EB9-1BC ₁	EB-9F X B138	19.50 abc	2.35 bcde	18.00 bcde	8.83 s	64.53 b	0.06 h	
EB9-2BC ₁	EB-9F ₁ X B138	15.75 fghi	2.38 abcde	18.25 bcd	10.83 s	101.77 i	0.10 d	
BE2-1-1BC ₁	BE2-1BC X B138	7.00 op	2.28 de	18.75 ab	7.23 d	19.41 s	0.02 l	
BE2-1-2BC ₂	BE2-1BC ₁ X B138	15.25 fgij	2.43 abcd	14.50 lm	10.71 w	107.09 f	0.11 c	
BE2-1-3BC ₂	BE2-1BC ₁ X B138	14.75 ghij	2.45 abc	11.50 n	9.87 i	64.09 c	0.06 h	
BE2-1-4BC ₂	BE2-1BC ₁ X B138	16.75 defg	2.40 abcde	18.00 bcde	10.05 h	86.27 r	0.09 e	
BE2-1-5BC ₂	BE2-1BC ₁ X B138	8.75 mnjo	15.28 x	2.40 abcde	16.00 hijk	11.79 g	47.33 k	0.05 i
BE2-1-6BC ₂	BE2-1BC ₁ X B138	13.25 ijk	16.18 tuv	2.43 abc	15.75 ijkl	11.41 k	54.71 i	0.05 i
BE3-1BC ₂	BE3-1BC ₁ X B138	13.25 hijklmn	17.35 hijklmn	2.38 abcde	18.25 bcd	9.45 j	45.22 m	
BE3-2-1BC ₂	BE3-1BC ₁ X B138	19.13 b	2.40 abcde	17.00 defghi	11.58 i	86.55 q	0.09 e	
BE3-3BC ₂	BE3-3BC ₁ X B138	16.25 fgij	2.28 ab	18.75 ab	7.23 d	19.41 s	0.02 l	
BE5-6-1BC ₂	EB5-1BC X B138	15.75 fghi	17.93 defghi	2.43 abcd	14.50 lm	10.71 w	107.09 f	0.11 c
EB8-7-1BC ₂	EB8-1BC X B138	20.00 ab	17.63 fghijklmn	2.45 abc	11.50 n	9.87 i	64.09 c	0.06 h
EB8-7-2BC ₂	EB8-1BC ₁ X B138	18.50 bcde	16.88 npqrst	2.40 abcde	18.00 bcde	10.05 h	86.27 r	0.09 e
EB9-9-1BC ₂	EB9-1BC X B138	7.50 np	15.28 x	2.40 abcde	16.00 hijk	11.79 g	47.33 k	0.05 i
EB9-9-2BC ₂	EB9-1BC ₁ X B138	14.50 fghi	16.18 tuv	2.43 abc	15.75 ijkl	11.41 k	54.71 i	0.05 i
EB9-9-3BC ₂	EB9-1BC ₁ X B138	14.50 fghi	17.35 hijklmn	2.38 abcde	18.25 bcd	9.45 j	45.22 m	
EB9-10-1BC ₂	EB9-2BC X B138	13.75 hijk	17.38 fghijklmn	2.33 cde	17.00 defghi	10.41 b	87.23 p	0.09 e
EB9-10-2BC ₂	EB9-2BC ₁ X B138	15.00 fghi	18.78 bc	2.43 abc	18.25 bcd	11.25 n	71.57 z	0.07 g
EB9-10-3BC ₂	EB9-2BC X B138	20.25 ab	16.25 stuv	2.33 cde	17.75 bcdef	9.29 k	59.10 h	0.06 h
EB9-10-4BC ₂	EB9-2BC ₁ X B138	15.75 fghi	17.15 jklmnopq	2.28 de	18.25 bcd	10.34 c	84.92 s	0.08 f
EB9-10-5BC ₂	EB9-2BC X B138	10.25 lm	18.38 bcdef	2.53 a	18.75 ab	9.21 l	62.49 f	0.06 h
EB9-10-6BC ₂	EB9-2BC ₁ X B138	15.25 fgij	18.38 bcdef	2.30 cde	19.75 a	12.41 c	78.37 x	0.08 f
EB9-10-7BC ₂	EB9-2BC X B138	5.25 p	17.78 defghijkl	2.45 abc	16.75 eighi	10.74 v	63.11 e	0.06 h
						10.15 f	21.11 r	0.02 l
R ²	0.91	0.83	0.30	0.73	1.00	1.00	1.00	1.00
GM	14.82	17.42	2.38	16.93	10.69	74.65	0.07	
LSD (0.05)	2.26	0.75	0.17	1.45	0.00	0.00	0.00	0.00

Note: NOPP (Number of pods per plant), PL [Pod length (cm)], PW [Pod width(cm)], NOSP (Number of seed per pod), HSW [100 seed weight(g)], SYP [Seed yield per plant(g)], SYPP [Seed yield per plot(kg)], LSD (least significant difference. Different lowercase letters indicate $p \leq 0.05$, as determined by analysis of variance

genotypes (**Table 4**). Most progenies recorded pod length that was not significantly different from ER7 and B138 parental lines. Pod width exhibited a significant variation for all the genotypes studied. There was an improvement in some of the progenies developed as they recorded significantly more pod width compared to both the parental lines. Pod length and width are key yield-determining traits, as longer and wider pods can accommodate more seeds, thereby increasing grain yield (Molosiwa and Makwala, 2020). Zaki and Radwan (2022) similarly reported longer and thicker pods in several F_1 and F_2 cowpea crosses compared to their parents.

Pod width ranged from 2.25 cm (ER7) to 2.53 cm (EB-4 F_1) for the studied genotypes. The F_1 and RF_1 progenies were significantly wider compared to both the parental lines except for EB-1 F_1 (2.33 cm), EB-7 F_1 (2.30 cm) and EB-9 F_1 (2.30 cm) that were wider than ER7 but not significantly different from B138 (**Table 4**). The BC_1 and RBC_1 generations were wider than both the parental lines except BE3-2BC₁ (2.30 cm), BE3-3BC₁ (2.33 cm) and EB4-1BC₁ (2.30 cm), that were significantly wider than ER7 but not significantly from B138. A more significant variation was recorded amongst the BC_2 progenies compared to both the parental lines with BE2-1-1BC₂ (2.28 cm) lesser than B138 but wider ER7. The RBC_2 generations were significantly wider compared to both the parental lines except for EB5-6-1BC₂ (2.33 cm), EB9-9-3BC₂ (2.33 cm), EB9-10-2BC₂ (2.33 cm) and EB9-10-2BC₂ (2.30 cm) which were not significantly different from B138 but wider than ER7. EB9-10-4BC₂ (2.28 cm) was significantly wider than ER7 but less than B138.

The reciprocal F_1 ; EB-4 F_1 and EB-5 F_1 had a greater number of seeds per pod compared to the two parental lines. With the RBC_1 generation, EB9-1BC₁ and EB9-2BC₁ having a greater number of seeds per pod than B138 and ER7. The BC_2 and RBC_2 progenies; BE2-1-1BC₂, BE2-1-4BC₂, BE3-2-1BC₂, EB9-10-1BC₂, EB9-10-3BC₂, EB9-10-4BC₂, EB9-10-5BC₂ and EB9-10-6BC₂ recorded a greater number of seeds per pod than B138 and ER7. Number of seeds per pod ranged from 14.00 (BE-2F₁ and EB8-7-2BC₂) to 19.75 (EB9-10-6BC₂) across all the studied genotypes. Hundred (100) seed weight for the genotypes studied ranged from 7.23 g (BE2-1-1BC₂) to 13.06 g (BE3-1BC₁) (**Table 4**). The F_1 progenies weighed significantly more compared to the two parental genotypes. With the RF_1 progenies, EB-4 F_1 and EB-5 F_1 , weighing more compared to the two parental lines. The BC_1 generations weighed significantly more compared to both parental lines, except for BE2-1BC₁ which weighed less than B138 but more than ER7. EB4-1BC₁ weighed more than B138 and ER7. With BC_2 progenies, BE2-1-5BC₂, BE2-1-6BC₂ and BE3-4-1BC₂ weigh more compared to the two parental lines. The RBC_2 generation; EB5-6-1BC₂, EB8-7-1BC₂, EB8-7-2BC₂, EB9-9-1BC₂, EB9-10-1BC₂ and EB9-10-5BC₂ weighed more than B138 and ER7.

Data recorded for number of seeds per pod across the studied genotypes; the reciprocal F_1 ; EB-4 F_1 (18.00) and EB-5 F_1 (18.25), RBC_1 generation; EB9-1BC₁ and EB9-2BC₁, BC_2 and RBC_2 progenies; BE2-1-1BC₂, BE2-1-4BC₂, BE3-2-1BC₁, EB9-10-1BC₂, EB9-10-3BC₂, EB9-10-4BC₂, EB9-10-5BC₂ and EB9-10-6BC₂ recorded a greater number of seeds per pod than both the parental lines (B138 and ER7). These genotypes could be selected for improvement as they indicated a great potential that may contribute to grain yield (**Table 4**). In another cowpea study by Zaki and Radwan (2022), F_1 and F_2 ; Col x AI, Col x Com1, Cr7 x AI, Cr7 x Com1, D331 x AI, and D331 x Com1. 'AI' and 'Com1' had superior number of seeds per pod and seed weight per pod.

Seed yield per plant ranged from 16.10 g (EB-3 F_1) to 134.62 g (EB4-1BC₁) (**Table 4**). The F_1 and RF_1 progenies yield significantly less compared to the two parental lines. For the BC_1 generations, only BE3-2BC₁ was more yielding compared to the two parental lines. BE2-1BC₁ and BE3-3BC₁ yielded more than ER7 but less than B138. The reciprocal BC_1 had less seed yield compared to the two parental lines except for EB4-1BC₁ which yielded more compared to the two parental lines. EB5-1BC₁ and EB9-2BC₁ had less seed yield compared to B138 but more than ER7. The BC_2 and RBC_2 progenies significantly yielded less compared to the two parental lines, with BE2-1-2BC₂ and EB5-6-1BC₂ yielding more than ER7 but less than B138. The same trend for seed yield per plot (g) was observed for the studied genotypes.

The 100 seed weight for the genotypes studied, F_1 progenies, RF_1 progenies, EB-4 F_1 and EB-5 F_1 , BC_1 generations, BC_2 progenies, BE2-1-5BC₂, BE2-1-6BC₂ and BE3-4-1BC₂ recorded more seed weight compared to the two parental lines (**Table 4**). The RBC_2 generation; EB5-6-1BC₂, EB8-7-1BC₂, EB8-7-2BC₂, EB9-9-1BC₂, EB9-10-1BC₂ and EB9-10-5BC₂ recorded more 100 seed weight than both B138 and ER7. Since 100-seed weight is a reliable indicator of seed size and yield potential, it remains a crucial selection criterion in cowpea breeding.

Zaki and Radwan (2022) recorded a significant variation in seed weight per plant produced by the cowpea F_1 and F_2 generations of crossings. Crosses in F_1 had a higher seed weight than crosses in F_2 , except Cr7 x AI cross, which had the lowest seed weight of all the crosses. D331 x AI cross exceeded the parental genotypes as well as the other crosses in F_1 with an average of 80.7 g per plant. Ajayi (2023) also reported higher yield traits in reciprocal crosses, although these remained lower than the superior parent IT98K-555-1.

From this study, the reciprocal BC_2 generation (EB8-7-1BC₂ and EB8-7-2BC₂) showed a reduction in days to maturity reaching maturity at 51 and 50 days after sowing, respectively, which was earlier than the early-maturing parent that matured at 53 days after sowing.

Yield improvement was also observed in the backcross 2 generation (BE2-1-2BC₂ and EB5-6-1BC₂) as BE2-1-2BC₂ and EB5-6-1BC₂ recorded increases in seed yield per plant of 5.41 g and 4.54 g, respectively, compared to ER7 (101.68 g). This increase indicates genetic improvement in the offspring and supports their selection for further breeding. Among the developed BC₂ offsprings, EB8-7-1BC₂, EB8-7-2BC₂, EB9-10-1BC₂, EB9-10-2BC₂, EB9-10-3BC₂, EB9-10-5BC₂ and EB9-10-7BC₂ showed improved earliness by reaching maturity earlier than both parents. For number of seed per pod, BE2-1-1BC₂, BE2-1-4BC₂, BE3-2-1BC₂, EB9-10-1BC₂, EB9-10-3BC₂, EB9-10-4BC₂, EB9-10-5BC₂ and EB9-10-6BC₂ performed better than both parental lines. Thus, these backcross 2 offsprings can be effectively utilized for further breeding programs for improvement of early maturity and yield. Present study concluded that backcross breeding method was successfully used to develop improved cowpea offspring in terms of early maturity and increased yield.

ACKNOWLEDGEMENT

The authors express gratitude to the Botswana University of Agriculture and Natural Resources (BUAN) for providing the scholarship that facilitated this research.

REFERENCES

Ajayi, A. T. 2023. Genetic variability of quantitative traits in F₂ hybrids of cowpea and parent lines. *Journal of Genetic Resources*, **9**(1): 1–10.

Aishwarya, B., Patil, B. R., Patil, R. S., Hegde, M. G. and Rao, M. S. L. 2025. Assessment of combining ability and genetic parameters for yield and fiber traits in upland cotton (*Gossypium hirsutum* L.) using Line x Tester analysis. *Electronic Journal of Plant Breeding*, **16**(1): 133–140. [\[Cross Ref\]](#)

Barro, A., Batieno, B. J., Nanama, J., Coulibaly, Z. and Sawadogo, M. 2023. Agro-morphological characterization of selected varieties of vegetable cowpea [*Vigna unguiculata* (L.) Walp.] in Burkina Faso. *Journal of Experimental Biology and Agricultural Sciences*, **11**(3): 550–562. [\[Cross Ref\]](#)

Boukar, O., Belko, N., Chamarthi, S., Togola, A., Batieno, J., Owusu, E., Haruna, M., Diallo, S., Umar, M. L., Olufajo, O. and Fatokun, C. 2019. Cowpea (*Vigna unguiculata*): Genetics, genomics and breeding. *Plant Breeding*, **138**(4): 415–424. [\[Cross Ref\]](#)

Carvalho, M., Muñoz-Amatriaín, M., Castro, I., Lino-Neto, T., Matos, M., Egea-Cortines, M., Rosa, E., Close, T. and Carnide, V. 2017. Genetic diversity and structure of Iberian Peninsula cowpeas compared to world-wide cowpea accessions using high density SNP markers. *BMC Genomics*, **18**(1): 1–9. [\[Cross Ref\]](#)

Doumbia, I. Z., Akromah, R. and Asibuo, J. Y. 2013. Comparative study of cowpea germplasms diversity from Ghana and Mali using morphological characteristics. *Journal of Plant Breeding and Genetics*, **1**(3): 139–147.

Dzemo, W. D., Niba, A. S. and Asiwe, J. A. N. 2010. Effects of insecticide spray application on insect pest infestation and yield of cowpea (*Vigna unguiculata* (L.) Walp.) in the Transkei, South Africa. *African Journal of Biotechnology*, **9**(11): 1673–1679. [\[Cross Ref\]](#)

Gerrano, A. S., Thungo, Z. G. and Mavengahama, S. 2022. Phenotypic description of elite cowpea (*Vigna unguiculata* L. Walp) genotypes grown in drought-prone environments using agronomic traits. *Helijon*, **8**(2): e08855. [\[Cross Ref\]](#)

Herniter, I. A., Lo, R., Muñoz-Amatriaín, M., Lo, S., Guo, Y. N., Huynh, B. L., Lucas, M., Jia, Z., Roberts, P. A., Lonardi, S. and Close, T. J. 2019. Seed coat pattern QTL and development in cowpea (*Vigna unguiculata* [L.] Walp.). *Frontiers in Plant Science*, **10**(10): 1–12. [\[Cross Ref\]](#)

Horn, Lydia. N., Nghituwamhata, Selma. N. and Isabella, U. 2022. Cowpea production challenges and contribution to livelihood in Sub-Saharan Region. *Agricultural Sciences*, **13**(1): 25–32. [\[Cross Ref\]](#)

IBPGR Executive Secretariat. 1983. Cowpea Descriptors. International Board for Plant Genetic Resources. pp. 1–30.

Karuwal, R. L., Tjahjoleksono, A. and Hanif, N. 2017. Physiological responses of some local cowpea from Southwest Maluku (Indonesia) varieties to drought stress. *Biodiversitas Journal of Biological Diversity*, **18**(4): 1294–1299. [\[Cross Ref\]](#)

Khojambergenov, N. M., Jumaniyazov, K. J., Rasulov, D. I., Kurbanov, E. A. and Korabayev, S. A. 2025. Combining ability analysis and breeding for early-maturing cotton (*Gossypium hirsutum* L.) varieties using Line x Tester analysis. *Electronic Journal of Plant Breeding*, **4**(16): 457–462

Lazaridi, E., Suso, M. J., Ortiz-Sánchez, F. J. and Bebeli, P. J. 2023. Investigation of cowpea (*Vigna unguiculata* (L.) Walp.)–insect pollinator interactions aiming to increase cowpea yield and define new breeding tools. *Ecologies*, **4**(1): 124–140. [\[Cross Ref\]](#)

Metwally, E., Sharshar, M., Masoud, A., Masry, A., Fiad, A., Kilian, B., Sharma, S., Shaw, P. D., Raubach, S. and Rakha, M. 2021. Development of high yielding cowpea [*Vigna unguiculata* (L.) Walp.] lines with improved quality seeds through mutation and pedigree selection methods. *Horticulturae*, **7**(9): 271. [\[Cross Ref\]](#)

Molosiwa, O.O., Gwafila, C., Makore, J. and Chite, M. 2016. Phenotypic variation in cowpea (*Vigna*

unguiculata [L.] Walp.) germplasm collection from Botswana. *International Journal of Biodiversity and Conservation*, **8**(7): 153–163. [\[Cross Ref\]](#)

Molosiwa, O. O. and Makwala, B. 2020. Field evaluation of introduced and local cowpea genotypes performance in Botswana. *African Journal of Agricultural Research*, **16**(9): 1317–1324. [\[Cross Ref\]](#)

Owusu, Akromah, R., Denwar, N. N., Adjepong-Danquah, J., Kusi, F. and Haruna, M. 2018. Inheritance of early maturity in some cowpea (*Vigna unguiculata* (L.) Walp.) genotypes under rain fed conditions in Northern Ghana. *Advances in Agriculture*, **3**: 1–10. [\[Cross Ref\]](#)

Owusu, E. Y. 2020. Genetic study of extra-early maturity in cowpea (*Vigna unguiculata* (L.) Walp). M.Sc. Thesis, Kwame Nkrumah University of Science and Technology, Kumasi.

Zaki, H. E. M. and Radwan, K. S. A. 2022. Estimates of genotypic and phenotypic variance, heritability and genetic advance of horticultural traits in developed crosses of cowpea (*Vigna unguiculata* [L.] Walp). *Frontiers in Plant Science*, **13**(9): 1–17. [\[Cross Ref\]](#)